Ontology type: schema:ScholarlyArticle
1982
AUTHORSRichard N. Grugel, A. Hellawell
ABSTRACTABSTRACT The microstructure of alloys undergoing a monotectic reaction, Liquid I ⇆ Solid I + Liquid II, is related to the height of the liquid miscibility gap, upper consolute temperature, T C , relative to that of the monotectic horizontal at T M . It has been shown in the system Cu-Pb-Al that a transition in microstructure occurs as the temperature interval, T c -T M , changes with composition. In order to observe the structural change directly in a transparent material, it has been necessary to determine the liquidus surface for the system succinnonitrile(S)-ethanol(E)-glycerol(G). In this system monotectic reactions in the binary S-E and S-G systems are joined by a monovariant valley and a structural transition occurs at approximately 85.6 wt. % S, 7.5 wt. % E, 6.9 wt. % G, at a ratio of 48:52 = G:E. More... »
PAGES417
http://scigraph.springernature.com/pub.10.1557/proc-19-417
DOIhttp://dx.doi.org/10.1557/proc-19-417
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067915891
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Metallurgical Engineering, Michigan Technological University, Houghton MI 49931",
"id": "http://www.grid.ac/institutes/grid.259979.9",
"name": [
"Department of Metallurgical Engineering, Michigan Technological University, Houghton MI 49931"
],
"type": "Organization"
},
"familyName": "Grugel",
"givenName": "Richard N.",
"id": "sg:person.013773444133.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Metallurgical Engineering, Michigan Technological University, Houghton MI 49931",
"id": "http://www.grid.ac/institutes/grid.259979.9",
"name": [
"Department of Metallurgical Engineering, Michigan Technological University, Houghton MI 49931"
],
"type": "Organization"
},
"familyName": "Hellawell",
"givenName": "A.",
"id": "sg:person.0671615120.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671615120.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02686415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041930090",
"https://doi.org/10.1007/bf02686415"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02643357",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029942971",
"https://doi.org/10.1007/bf02643357"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02649742",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042325016",
"https://doi.org/10.1007/bf02649742"
],
"type": "CreativeWork"
}
],
"datePublished": "1982",
"datePublishedReg": "1982-01-01",
"description": "ABSTRACT The microstructure of alloys undergoing a monotectic reaction, Liquid I \u21c6 Solid I + Liquid II, is related to the height of the liquid miscibility gap, upper consolute temperature, T C , relative to that of the monotectic horizontal at T M . It has been shown in the system Cu-Pb-Al that a transition in microstructure occurs as the temperature interval, T c -T M , changes with composition. In order to observe the structural change directly in a transparent material, it has been necessary to determine the liquidus surface for the system succinnonitrile(S)-ethanol(E)-glycerol(G). In this system monotectic reactions in the binary S-E and S-G systems are joined by a monovariant valley and a structural transition occurs at approximately 85.6 wt. % S, 7.5 wt. % E, 6.9 wt. % G, at a ratio of 48:52 = G:E. ",
"genre": "article",
"id": "sg:pub.10.1557/proc-19-417",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"keywords": [
"monotectic reaction",
"microstructure of alloys",
"liquid miscibility gap",
"liquidus surface",
"transparent materials",
"microstructure",
"monotectic horizontal",
"temperature interval",
"miscibility gap",
"upper consolute temperature",
"wt",
"consolute temperature",
"surface",
"G systems",
"alloy",
"system Cu\u2013Pb",
"structural transition",
"liquid I",
"liquids II",
"horizontal",
"temperature",
"materials",
"system",
"height",
"structural changes",
"transition",
"ratio",
"Cu-Pb",
"al",
"order",
"composition",
"reaction",
"glycerol",
"gap",
"changes",
"Abstract",
"Valley",
"interval"
],
"name": "Monotectic Alloy Solidification - Determination of the Liquidus Surface in the System Succinnonitrile-Ethanol-Glycerol",
"pagination": "417",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067915891"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/proc-19-417"
]
}
],
"sameAs": [
"https://doi.org/10.1557/proc-19-417",
"https://app.dimensions.ai/details/publication/pub.1067915891"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_175.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/proc-19-417"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-19-417'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-19-417'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-19-417'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-19-417'
This table displays all metadata directly associated to this object as RDF triples.
111 TRIPLES
21 PREDICATES
65 URIs
54 LITERALS
5 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/proc-19-417 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Nbad2497bdb89491caa022b9b6da60791 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02643357 |
5 | ″ | ″ | sg:pub.10.1007/bf02649742 |
6 | ″ | ″ | sg:pub.10.1007/bf02686415 |
7 | ″ | schema:datePublished | 1982 |
8 | ″ | schema:datePublishedReg | 1982-01-01 |
9 | ″ | schema:description | ABSTRACT The microstructure of alloys undergoing a monotectic reaction, Liquid I ⇆ Solid I + Liquid II, is related to the height of the liquid miscibility gap, upper consolute temperature, T C , relative to that of the monotectic horizontal at T M . It has been shown in the system Cu-Pb-Al that a transition in microstructure occurs as the temperature interval, T c -T M , changes with composition. In order to observe the structural change directly in a transparent material, it has been necessary to determine the liquidus surface for the system succinnonitrile(S)-ethanol(E)-glycerol(G). In this system monotectic reactions in the binary S-E and S-G systems are joined by a monovariant valley and a structural transition occurs at approximately 85.6 wt. % S, 7.5 wt. % E, 6.9 wt. % G, at a ratio of 48:52 = G:E. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N94bea46fec0b4fa2882822ddff754d18 |
13 | ″ | ″ | sg:journal.1297379 |
14 | ″ | schema:keywords | Abstract |
15 | ″ | ″ | Cu-Pb |
16 | ″ | ″ | G systems |
17 | ″ | ″ | Valley |
18 | ″ | ″ | al |
19 | ″ | ″ | alloy |
20 | ″ | ″ | changes |
21 | ″ | ″ | composition |
22 | ″ | ″ | consolute temperature |
23 | ″ | ″ | gap |
24 | ″ | ″ | glycerol |
25 | ″ | ″ | height |
26 | ″ | ″ | horizontal |
27 | ″ | ″ | interval |
28 | ″ | ″ | liquid I |
29 | ″ | ″ | liquid miscibility gap |
30 | ″ | ″ | liquids II |
31 | ″ | ″ | liquidus surface |
32 | ″ | ″ | materials |
33 | ″ | ″ | microstructure |
34 | ″ | ″ | microstructure of alloys |
35 | ″ | ″ | miscibility gap |
36 | ″ | ″ | monotectic horizontal |
37 | ″ | ″ | monotectic reaction |
38 | ″ | ″ | order |
39 | ″ | ″ | ratio |
40 | ″ | ″ | reaction |
41 | ″ | ″ | structural changes |
42 | ″ | ″ | structural transition |
43 | ″ | ″ | surface |
44 | ″ | ″ | system |
45 | ″ | ″ | system Cu–Pb |
46 | ″ | ″ | temperature |
47 | ″ | ″ | temperature interval |
48 | ″ | ″ | transition |
49 | ″ | ″ | transparent materials |
50 | ″ | ″ | upper consolute temperature |
51 | ″ | ″ | wt |
52 | ″ | schema:name | Monotectic Alloy Solidification - Determination of the Liquidus Surface in the System Succinnonitrile-Ethanol-Glycerol |
53 | ″ | schema:pagination | 417 |
54 | ″ | schema:productId | N010514814508439e91ff700089025f5d |
55 | ″ | ″ | Ndb85372459b74ce199f4bbd6fe3f057e |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067915891 |
57 | ″ | ″ | https://doi.org/10.1557/proc-19-417 |
58 | ″ | schema:sdDatePublished | 2022-08-04T16:50 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N811e732b99514e45bd6a961e3c11a4cf |
61 | ″ | schema:url | https://doi.org/10.1557/proc-19-417 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | articles |
64 | ″ | rdf:type | schema:ScholarlyArticle |
65 | N010514814508439e91ff700089025f5d | schema:name | dimensions_id |
66 | ″ | schema:value | pub.1067915891 |
67 | ″ | rdf:type | schema:PropertyValue |
68 | N3beac1cd2d9c450bbba3975647fd6dab | rdf:first | sg:person.0671615120.35 |
69 | ″ | rdf:rest | rdf:nil |
70 | N811e732b99514e45bd6a961e3c11a4cf | schema:name | Springer Nature - SN SciGraph project |
71 | ″ | rdf:type | schema:Organization |
72 | N94bea46fec0b4fa2882822ddff754d18 | schema:volumeNumber | 19 |
73 | ″ | rdf:type | schema:PublicationVolume |
74 | Nbad2497bdb89491caa022b9b6da60791 | rdf:first | sg:person.013773444133.30 |
75 | ″ | rdf:rest | N3beac1cd2d9c450bbba3975647fd6dab |
76 | Ndb85372459b74ce199f4bbd6fe3f057e | schema:name | doi |
77 | ″ | schema:value | 10.1557/proc-19-417 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
80 | ″ | schema:name | Engineering |
81 | ″ | rdf:type | schema:DefinedTerm |
82 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
83 | ″ | schema:name | Materials Engineering |
84 | ″ | rdf:type | schema:DefinedTerm |
85 | sg:journal.1297379 | schema:issn | 0272-9172 |
86 | ″ | ″ | 2059-8521 |
87 | ″ | schema:name | MRS Advances |
88 | ″ | schema:publisher | Springer Nature |
89 | ″ | rdf:type | schema:Periodical |
90 | sg:person.013773444133.30 | schema:affiliation | grid-institutes:grid.259979.9 |
91 | ″ | schema:familyName | Grugel |
92 | ″ | schema:givenName | Richard N. |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30 |
94 | ″ | rdf:type | schema:Person |
95 | sg:person.0671615120.35 | schema:affiliation | grid-institutes:grid.259979.9 |
96 | ″ | schema:familyName | Hellawell |
97 | ″ | schema:givenName | A. |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671615120.35 |
99 | ″ | rdf:type | schema:Person |
100 | sg:pub.10.1007/bf02643357 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029942971 |
101 | ″ | ″ | https://doi.org/10.1007/bf02643357 |
102 | ″ | rdf:type | schema:CreativeWork |
103 | sg:pub.10.1007/bf02649742 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042325016 |
104 | ″ | ″ | https://doi.org/10.1007/bf02649742 |
105 | ″ | rdf:type | schema:CreativeWork |
106 | sg:pub.10.1007/bf02686415 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041930090 |
107 | ″ | ″ | https://doi.org/10.1007/bf02686415 |
108 | ″ | rdf:type | schema:CreativeWork |
109 | grid-institutes:grid.259979.9 | schema:alternateName | Department of Metallurgical Engineering, Michigan Technological University, Houghton MI 49931 |
110 | ″ | schema:name | Department of Metallurgical Engineering, Michigan Technological University, Houghton MI 49931 |
111 | ″ | rdf:type | schema:Organization |