Ontology type: schema:ScholarlyArticle
2009
AUTHORSPrashant K. Kulshreshtha, Khaled M. Youssef, George Rozgonyi
ABSTRACTSince the initiation and propagation of a micro-crack in a silicon wafer introduces local variations in stress, it is critical to the understanding of wafer breakage that accurate profiling of stress be performed in the vicinity of the micro-crack. In this study, nanoindentation has been used to investigate the stress-relaxation during crack initiation and propagation in material of particular interest to the photovoltaic (PV) industry. The low load (<1 mN) capability of a Hysitron Triboindenter ® was used to accurately profile the extent of plastic deformation and resulting amorphization. Measurements were made on Si samples extracted from top, middle and bottom of a (100) oriented single crystal ingot to evaluate the impact of different carbon, oxygen and metallic impurity concentrations. A gradual but significant drop in hardness from 10.2 to 6.9 GPa occurred as indents were made closer to the micro-crack and was attributed to local amorphization. Electron back scattered diffraction (EBSD) and Raman spectroscopy confirmed the amorphization, respectively, at nano- and micro-scale. More... »
PAGES1210-q05-08
http://scigraph.springernature.com/pub.10.1557/proc-1210-q05-08
DOIhttp://dx.doi.org/10.1557/proc-1210-q05-08
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067909508
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States",
"id": "http://www.grid.ac/institutes/grid.40803.3f",
"name": [
"North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States"
],
"type": "Organization"
},
"familyName": "Kulshreshtha",
"givenName": "Prashant K.",
"id": "sg:person.013015167173.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015167173.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States",
"id": "http://www.grid.ac/institutes/grid.40803.3f",
"name": [
"North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States"
],
"type": "Organization"
},
"familyName": "Youssef",
"givenName": "Khaled M.",
"id": "sg:person.07651453533.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651453533.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States",
"id": "http://www.grid.ac/institutes/grid.40803.3f",
"name": [
"North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States"
],
"type": "Organization"
},
"familyName": "Rozgonyi",
"givenName": "George",
"id": "sg:person.014024565415.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014024565415.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nature07297",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032503550",
"https://doi.org/10.1038/nature07297"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1557/jmr.2004.0165",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034937843",
"https://doi.org/10.1557/jmr.2004.0165"
],
"type": "CreativeWork"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "Abstract Since the initiation and propagation of a micro-crack in a silicon wafer introduces local variations in stress, it is critical to the understanding of wafer breakage that accurate profiling of stress be performed in the vicinity of the micro-crack. In this study, nanoindentation has been used to investigate the stress-relaxation during crack initiation and propagation in material of particular interest to the photovoltaic (PV) industry. The low load (<1 mN) capability of a Hysitron Triboindenter \u00ae was used to accurately profile the extent of plastic deformation and resulting amorphization. Measurements were made on Si samples extracted from top, middle and bottom of a (100) oriented single crystal ingot to evaluate the impact of different carbon, oxygen and metallic impurity concentrations. A gradual but significant drop in hardness from 10.2 to 6.9 GPa occurred as indents were made closer to the micro-crack and was attributed to local amorphization. Electron back scattered diffraction (EBSD) and Raman spectroscopy confirmed the amorphization, respectively, at nano- and micro-scale. ",
"genre": "article",
"id": "sg:pub.10.1557/proc-1210-q05-08",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297379",
"issn": [
"0272-9172",
"2059-8521"
],
"name": "MRS Advances",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "1210"
}
],
"keywords": [
"low load capability",
"metallic impurity concentration",
"wafer breakage",
"crack initiation",
"micro cracks",
"load capability",
"plastic deformation",
"silicon wafers",
"photovoltaic industry",
"Hysitron Triboindenter",
"local amorphization",
"single crystal ingots",
"PV silicon",
"Si samples",
"crystal ingot",
"impurity concentration",
"amorphization",
"Raman spectroscopy",
"TriboIndenter",
"nanoindentation",
"propagation",
"wafers",
"indents",
"ingots",
"different carbon",
"hardness",
"silicon",
"deformation",
"local variations",
"nano",
"stress",
"GPa",
"diffraction",
"materials",
"drop",
"breakage",
"significant drop",
"bottom",
"capability",
"carbon",
"measurements",
"particular interest",
"industry",
"vicinity",
"spectroscopy",
"oxygen",
"electrons",
"variation",
"concentration",
"accurate profiling",
"initiation",
"samples",
"impact",
"interest",
"study",
"extent",
"understanding",
"profiling"
],
"name": "Evaluating Amorphization Around Micro-Cracks in PV Silicon",
"pagination": "1210-q05-08",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067909508"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/proc-1210-q05-08"
]
}
],
"sameAs": [
"https://doi.org/10.1557/proc-1210-q05-08",
"https://app.dimensions.ai/details/publication/pub.1067909508"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_476.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/proc-1210-q05-08"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/proc-1210-q05-08'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/proc-1210-q05-08'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/proc-1210-q05-08'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/proc-1210-q05-08'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
22 PREDICATES
85 URIs
75 LITERALS
5 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/proc-1210-q05-08 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Nc3164e72af584e1aa738a85a548e5b67 |
4 | ″ | schema:citation | sg:pub.10.1038/nature07297 |
5 | ″ | ″ | sg:pub.10.1557/jmr.2004.0165 |
6 | ″ | schema:datePublished | 2009 |
7 | ″ | schema:datePublishedReg | 2009-01-01 |
8 | ″ | schema:description | Abstract Since the initiation and propagation of a micro-crack in a silicon wafer introduces local variations in stress, it is critical to the understanding of wafer breakage that accurate profiling of stress be performed in the vicinity of the micro-crack. In this study, nanoindentation has been used to investigate the stress-relaxation during crack initiation and propagation in material of particular interest to the photovoltaic (PV) industry. The low load (<1 mN) capability of a Hysitron Triboindenter ® was used to accurately profile the extent of plastic deformation and resulting amorphization. Measurements were made on Si samples extracted from top, middle and bottom of a (100) oriented single crystal ingot to evaluate the impact of different carbon, oxygen and metallic impurity concentrations. A gradual but significant drop in hardness from 10.2 to 6.9 GPa occurred as indents were made closer to the micro-crack and was attributed to local amorphization. Electron back scattered diffraction (EBSD) and Raman spectroscopy confirmed the amorphization, respectively, at nano- and micro-scale. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Nc08f9ddf557f45319ec5acdcc8640169 |
13 | ″ | ″ | sg:journal.1297379 |
14 | ″ | schema:keywords | GPa |
15 | ″ | ″ | Hysitron Triboindenter |
16 | ″ | ″ | PV silicon |
17 | ″ | ″ | Raman spectroscopy |
18 | ″ | ″ | Si samples |
19 | ″ | ″ | TriboIndenter |
20 | ″ | ″ | accurate profiling |
21 | ″ | ″ | amorphization |
22 | ″ | ″ | bottom |
23 | ″ | ″ | breakage |
24 | ″ | ″ | capability |
25 | ″ | ″ | carbon |
26 | ″ | ″ | concentration |
27 | ″ | ″ | crack initiation |
28 | ″ | ″ | crystal ingot |
29 | ″ | ″ | deformation |
30 | ″ | ″ | different carbon |
31 | ″ | ″ | diffraction |
32 | ″ | ″ | drop |
33 | ″ | ″ | electrons |
34 | ″ | ″ | extent |
35 | ″ | ″ | hardness |
36 | ″ | ″ | impact |
37 | ″ | ″ | impurity concentration |
38 | ″ | ″ | indents |
39 | ″ | ″ | industry |
40 | ″ | ″ | ingots |
41 | ″ | ″ | initiation |
42 | ″ | ″ | interest |
43 | ″ | ″ | load capability |
44 | ″ | ″ | local amorphization |
45 | ″ | ″ | local variations |
46 | ″ | ″ | low load capability |
47 | ″ | ″ | materials |
48 | ″ | ″ | measurements |
49 | ″ | ″ | metallic impurity concentration |
50 | ″ | ″ | micro cracks |
51 | ″ | ″ | nano |
52 | ″ | ″ | nanoindentation |
53 | ″ | ″ | oxygen |
54 | ″ | ″ | particular interest |
55 | ″ | ″ | photovoltaic industry |
56 | ″ | ″ | plastic deformation |
57 | ″ | ″ | profiling |
58 | ″ | ″ | propagation |
59 | ″ | ″ | samples |
60 | ″ | ″ | significant drop |
61 | ″ | ″ | silicon |
62 | ″ | ″ | silicon wafers |
63 | ″ | ″ | single crystal ingots |
64 | ″ | ″ | spectroscopy |
65 | ″ | ″ | stress |
66 | ″ | ″ | study |
67 | ″ | ″ | understanding |
68 | ″ | ″ | variation |
69 | ″ | ″ | vicinity |
70 | ″ | ″ | wafer breakage |
71 | ″ | ″ | wafers |
72 | ″ | schema:name | Evaluating Amorphization Around Micro-Cracks in PV Silicon |
73 | ″ | schema:pagination | 1210-q05-08 |
74 | ″ | schema:productId | N48934366bbc9414fb1144d02da5a13e6 |
75 | ″ | ″ | N89f6e3e5bcfc4fa6a8767981ad129cca |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067909508 |
77 | ″ | ″ | https://doi.org/10.1557/proc-1210-q05-08 |
78 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | N2a5eaa2bc9404ce382b03050df51a6c4 |
81 | ″ | schema:url | https://doi.org/10.1557/proc-1210-q05-08 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | articles |
84 | ″ | rdf:type | schema:ScholarlyArticle |
85 | N251f6c9352cf43fe97b266aefbb46db9 | rdf:first | sg:person.014024565415.82 |
86 | ″ | rdf:rest | rdf:nil |
87 | N2a5eaa2bc9404ce382b03050df51a6c4 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | N4815502aea484dd5bec8a79974662c9d | rdf:first | sg:person.07651453533.73 |
90 | ″ | rdf:rest | N251f6c9352cf43fe97b266aefbb46db9 |
91 | N48934366bbc9414fb1144d02da5a13e6 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1067909508 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N89f6e3e5bcfc4fa6a8767981ad129cca | schema:name | doi |
95 | ″ | schema:value | 10.1557/proc-1210-q05-08 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Nc08f9ddf557f45319ec5acdcc8640169 | schema:volumeNumber | 1210 |
98 | ″ | rdf:type | schema:PublicationVolume |
99 | Nc3164e72af584e1aa738a85a548e5b67 | rdf:first | sg:person.013015167173.30 |
100 | ″ | rdf:rest | N4815502aea484dd5bec8a79974662c9d |
101 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Engineering |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Materials Engineering |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:journal.1297379 | schema:issn | 0272-9172 |
108 | ″ | ″ | 2059-8521 |
109 | ″ | schema:name | MRS Advances |
110 | ″ | schema:publisher | Springer Nature |
111 | ″ | rdf:type | schema:Periodical |
112 | sg:person.013015167173.30 | schema:affiliation | grid-institutes:grid.40803.3f |
113 | ″ | schema:familyName | Kulshreshtha |
114 | ″ | schema:givenName | Prashant K. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015167173.30 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.014024565415.82 | schema:affiliation | grid-institutes:grid.40803.3f |
118 | ″ | schema:familyName | Rozgonyi |
119 | ″ | schema:givenName | George |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014024565415.82 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.07651453533.73 | schema:affiliation | grid-institutes:grid.40803.3f |
123 | ″ | schema:familyName | Youssef |
124 | ″ | schema:givenName | Khaled M. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651453533.73 |
126 | ″ | rdf:type | schema:Person |
127 | sg:pub.10.1038/nature07297 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032503550 |
128 | ″ | ″ | https://doi.org/10.1038/nature07297 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1557/jmr.2004.0165 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034937843 |
131 | ″ | ″ | https://doi.org/10.1557/jmr.2004.0165 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | grid-institutes:grid.40803.3f | schema:alternateName | North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States |
134 | ″ | schema:name | North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States |
135 | ″ | rdf:type | schema:Organization |