Biotechnological Mineral Composites via Vaterite Precursors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05-25

AUTHORS

E. Weber, C. Guth, M. Eder, P. Bauer, E. Arzt, I. M. Weiss

ABSTRACT

ABSTRACT Vaterite is one of the thermodynamically less stable polymorphs of calcium carbonate. Under ambient conditions it transforms into calcite, the most stable form of calcium carbonate. Organisms are able to stabilize minerals such as vaterite by means of organic molecules. The exact mechanisms how biomineralization proteins interact with metastable mineral phases are, however, less well understood. Many in vitro studies were performed using calcite as a model system. A deeper understanding of the interaction of organic molecules with metastable mineral phases would make them useful as a tool to control mineralization processes in vitro. In this study, we report on the co-precipitation of a natively soluble histidine-tagged GFP (green fluorecent protein) with a metastable vaterite phase and the subsequent insolubility of the fluorescent organic matrix in a 30μl calcium carbonate precipitation assay. The intrinsic fluorescence of GFP is conserved during the interaction with the mineral phase, indicating proper folding even in the insoluble state. This experiment can be extended to obtain deeper insights into some mechanistic models of biomineralization proteins by tracking native and modified GFP proteins microscopically during various stages of mineral precipitation and dissolution. More... »

PAGES

mrss12-1465-ss03-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/opl.2012.1046

DOI

http://dx.doi.org/10.1557/opl.2012.1046

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067971533


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saarland University, Department Biosciences \u2013 Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;", 
            "Saarland University, Department Biosciences \u2013 Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "E.", 
        "id": "sg:person.01124540741.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124540741.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guth", 
        "givenName": "C.", 
        "id": "sg:person.01111172156.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111172156.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eder", 
        "givenName": "M.", 
        "id": "sg:person.01201553611.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201553611.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saarland University, Department Biosciences \u2013 Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "Saarland University, Department Biosciences \u2013 Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "P.", 
        "id": "sg:person.01175135434.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175135434.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM \u2013 Leibniz Institute for New Materials gGmbH, Functional Surfaces Group, Campus D2.2, D-66123 Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM \u2013 Leibniz Institute for New Materials gGmbH, Functional Surfaces Group, Campus D2.2, D-66123 Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arzt", 
        "givenName": "E.", 
        "id": "sg:person.01052234520.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052234520.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM \u2013 Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "I. M.", 
        "id": "sg:person.01352002561.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352002561.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-65474-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021952869", 
          "https://doi.org/10.1007/978-3-642-65474-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044703065", 
          "https://doi.org/10.1038/381056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-010-0692-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035281236", 
          "https://doi.org/10.1007/s00114-010-0692-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05-25", 
    "datePublishedReg": "2012-05-25", 
    "description": "ABSTRACT Vaterite is one of the thermodynamically less stable polymorphs of calcium carbonate. Under ambient conditions it transforms into calcite, the most stable form of calcium carbonate. Organisms are able to stabilize minerals such as vaterite by means of organic molecules. The exact mechanisms how biomineralization proteins interact with metastable mineral phases are, however, less well understood. Many in vitro studies were performed using calcite as a model system. A deeper understanding of the interaction of organic molecules with metastable mineral phases would make them useful as a tool to control mineralization processes in vitro. In this study, we report on the co-precipitation of a natively soluble histidine-tagged GFP (green fluorecent protein) with a metastable vaterite phase and the subsequent insolubility of the fluorescent organic matrix in a 30\u03bcl calcium carbonate precipitation assay. The intrinsic fluorescence of GFP is conserved during the interaction with the mineral phase, indicating proper folding even in the insoluble state. This experiment can be extended to obtain deeper insights into some mechanistic models of biomineralization proteins by tracking native and modified GFP proteins microscopically during various stages of mineral precipitation and dissolution.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/opl.2012.1046", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "2731-5894", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1465"
      }
    ], 
    "keywords": [
      "metastable mineral phases", 
      "organic molecules", 
      "biomineralization proteins", 
      "metastable vaterite phase", 
      "mineral phases", 
      "stable polymorph", 
      "vaterite phase", 
      "calcium carbonate", 
      "ambient conditions", 
      "stable form", 
      "mineral composite", 
      "intrinsic fluorescence", 
      "organic matrix", 
      "insoluble state", 
      "proper folding", 
      "GFP protein", 
      "mineral precipitation", 
      "molecules", 
      "vaterite", 
      "carbonate", 
      "protein", 
      "model system", 
      "GFP", 
      "mineralization process", 
      "calcium carbonate precipitation", 
      "deeper insight", 
      "insolubility", 
      "polymorphs", 
      "mechanistic model", 
      "phase", 
      "dissolution", 
      "carbonate precipitation", 
      "precursors", 
      "exact mechanism", 
      "calcite", 
      "interaction", 
      "fluorescence", 
      "organisms", 
      "precipitation", 
      "folding", 
      "composites", 
      "minerals", 
      "deeper understanding", 
      "matrix", 
      "insights", 
      "mechanism", 
      "process", 
      "understanding", 
      "stage", 
      "conditions", 
      "state", 
      "study", 
      "means", 
      "form", 
      "experiments", 
      "system", 
      "tool", 
      "model"
    ], 
    "name": "Biotechnological Mineral Composites via Vaterite Precursors", 
    "pagination": "mrss12-1465-ss03-10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067971533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/opl.2012.1046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/opl.2012.1046", 
      "https://app.dimensions.ai/details/publication/pub.1067971533"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/opl.2012.1046"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/opl.2012.1046'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/opl.2012.1046'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/opl.2012.1046'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/opl.2012.1046'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      84 URIs      73 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/opl.2012.1046 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N77c2cf72a1d54512a19326928fdaeb7a
4 schema:citation sg:pub.10.1007/978-3-642-65474-9
5 sg:pub.10.1007/s00114-010-0692-9
6 sg:pub.10.1038/381056a0
7 schema:datePublished 2012-05-25
8 schema:datePublishedReg 2012-05-25
9 schema:description ABSTRACT Vaterite is one of the thermodynamically less stable polymorphs of calcium carbonate. Under ambient conditions it transforms into calcite, the most stable form of calcium carbonate. Organisms are able to stabilize minerals such as vaterite by means of organic molecules. The exact mechanisms how biomineralization proteins interact with metastable mineral phases are, however, less well understood. Many in vitro studies were performed using calcite as a model system. A deeper understanding of the interaction of organic molecules with metastable mineral phases would make them useful as a tool to control mineralization processes in vitro. In this study, we report on the co-precipitation of a natively soluble histidine-tagged GFP (green fluorecent protein) with a metastable vaterite phase and the subsequent insolubility of the fluorescent organic matrix in a 30μl calcium carbonate precipitation assay. The intrinsic fluorescence of GFP is conserved during the interaction with the mineral phase, indicating proper folding even in the insoluble state. This experiment can be extended to obtain deeper insights into some mechanistic models of biomineralization proteins by tracking native and modified GFP proteins microscopically during various stages of mineral precipitation and dissolution.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N72dbbb1e9d5d4e5b9bf73b72cf427a92
13 sg:journal.1297379
14 schema:keywords GFP
15 GFP protein
16 ambient conditions
17 biomineralization proteins
18 calcite
19 calcium carbonate
20 calcium carbonate precipitation
21 carbonate
22 carbonate precipitation
23 composites
24 conditions
25 deeper insight
26 deeper understanding
27 dissolution
28 exact mechanism
29 experiments
30 fluorescence
31 folding
32 form
33 insights
34 insolubility
35 insoluble state
36 interaction
37 intrinsic fluorescence
38 matrix
39 means
40 mechanism
41 mechanistic model
42 metastable mineral phases
43 metastable vaterite phase
44 mineral composite
45 mineral phases
46 mineral precipitation
47 mineralization process
48 minerals
49 model
50 model system
51 molecules
52 organic matrix
53 organic molecules
54 organisms
55 phase
56 polymorphs
57 precipitation
58 precursors
59 process
60 proper folding
61 protein
62 stable form
63 stable polymorph
64 stage
65 state
66 study
67 system
68 tool
69 understanding
70 vaterite
71 vaterite phase
72 schema:name Biotechnological Mineral Composites via Vaterite Precursors
73 schema:pagination mrss12-1465-ss03-10
74 schema:productId N00604e94f26940bbabf4421634435817
75 N0f42de52cfb84f298325ea9644a65aac
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067971533
77 https://doi.org/10.1557/opl.2012.1046
78 schema:sdDatePublished 2022-11-24T20:57
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N7ed4f6a39d0f4629a9da5dabdf5fccdf
81 schema:url https://doi.org/10.1557/opl.2012.1046
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N00604e94f26940bbabf4421634435817 schema:name doi
86 schema:value 10.1557/opl.2012.1046
87 rdf:type schema:PropertyValue
88 N0f42de52cfb84f298325ea9644a65aac schema:name dimensions_id
89 schema:value pub.1067971533
90 rdf:type schema:PropertyValue
91 N2d9f6ba9079344f490eab43c889f2b01 rdf:first sg:person.01052234520.56
92 rdf:rest Nbfe1923b9949416da50eee06382f719f
93 N72dbbb1e9d5d4e5b9bf73b72cf427a92 schema:volumeNumber 1465
94 rdf:type schema:PublicationVolume
95 N77c2cf72a1d54512a19326928fdaeb7a rdf:first sg:person.01124540741.65
96 rdf:rest N85119a617380480aa0223c9ec0039980
97 N7ed4f6a39d0f4629a9da5dabdf5fccdf schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N85119a617380480aa0223c9ec0039980 rdf:first sg:person.01111172156.34
100 rdf:rest N8c26d212ef35458987e71d4d87cbfd3c
101 N8c26d212ef35458987e71d4d87cbfd3c rdf:first sg:person.01201553611.95
102 rdf:rest Na9ef9ca18d3742988340e5faeb280ed3
103 Na9ef9ca18d3742988340e5faeb280ed3 rdf:first sg:person.01175135434.15
104 rdf:rest N2d9f6ba9079344f490eab43c889f2b01
105 Nbfe1923b9949416da50eee06382f719f rdf:first sg:person.01352002561.33
106 rdf:rest rdf:nil
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biochemistry and Cell Biology
112 rdf:type schema:DefinedTerm
113 sg:journal.1297379 schema:issn 2059-8521
114 2731-5894
115 schema:name MRS Advances
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.01052234520.56 schema:affiliation grid-institutes:grid.425202.3
119 schema:familyName Arzt
120 schema:givenName E.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052234520.56
122 rdf:type schema:Person
123 sg:person.01111172156.34 schema:affiliation grid-institutes:grid.425202.3
124 schema:familyName Guth
125 schema:givenName C.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111172156.34
127 rdf:type schema:Person
128 sg:person.01124540741.65 schema:affiliation grid-institutes:grid.11749.3a
129 schema:familyName Weber
130 schema:givenName E.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124540741.65
132 rdf:type schema:Person
133 sg:person.01175135434.15 schema:affiliation grid-institutes:grid.11749.3a
134 schema:familyName Bauer
135 schema:givenName P.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175135434.15
137 rdf:type schema:Person
138 sg:person.01201553611.95 schema:affiliation grid-institutes:grid.425202.3
139 schema:familyName Eder
140 schema:givenName M.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201553611.95
142 rdf:type schema:Person
143 sg:person.01352002561.33 schema:affiliation grid-institutes:grid.425202.3
144 schema:familyName Weiss
145 schema:givenName I. M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352002561.33
147 rdf:type schema:Person
148 sg:pub.10.1007/978-3-642-65474-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021952869
149 https://doi.org/10.1007/978-3-642-65474-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00114-010-0692-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035281236
152 https://doi.org/10.1007/s00114-010-0692-9
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/381056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044703065
155 https://doi.org/10.1038/381056a0
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.11749.3a schema:alternateName Saarland University, Department Biosciences – Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany
158 schema:name INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;
159 Saarland University, Department Biosciences – Plant Biology, Campus A2.4, D-66123 Saarbruecken, Germany
160 rdf:type schema:Organization
161 grid-institutes:grid.425202.3 schema:alternateName INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;
162 INM – Leibniz Institute for New Materials gGmbH, Functional Surfaces Group, Campus D2.2, D-66123 Saarbruecken, Germany
163 schema:name INM – Leibniz Institute for New Materials gGmbH, Biomineralization Group, Campus D2.2, D-66123 Saarbruecken, Germany;
164 INM – Leibniz Institute for New Materials gGmbH, Functional Surfaces Group, Campus D2.2, D-66123 Saarbruecken, Germany
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...