Nanoporous Metals for Catalytic and Optical Applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08

AUTHORS

Yi Ding, Mingwei Chen

ABSTRACT

Nanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation. More... »

PAGES

569-576

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/mrs2009.156

DOI

http://dx.doi.org/10.1557/mrs2009.156

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067969635


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ding", 
        "givenName": "Yi", 
        "id": "sg:person.0777447511.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10562-007-9344-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000835752", 
          "https://doi.org/10.1007/s10562-007-9344-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:catl.0000038585.12878.9a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039078410", 
          "https://doi.org/10.1023/b:catl.0000038585.12878.9a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/s0883769400052647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067964113", 
          "https://doi.org/10.1557/s0883769400052647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2003.0030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015389966", 
          "https://doi.org/10.1557/jmr.2003.0030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03215223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035961578", 
          "https://doi.org/10.1007/bf03215223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-451-93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1115925768", 
          "https://doi.org/10.1557/proc-451-93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/282597a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041920222", 
          "https://doi.org/10.1038/282597a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4371098a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000723677", 
          "https://doi.org/10.1038/4371098a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35068529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020633318", 
          "https://doi.org/10.1038/35068529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "Abstract Nanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/mrs2009.156", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381332", 
        "issn": [
          "0883-7694", 
          "1938-1425"
        ], 
        "name": "MRS Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "surface-enhanced Raman scattering", 
      "nanoporous gold", 
      "nanoporous metals", 
      "fuel cell electrode materials", 
      "low precious metal loading", 
      "bare nanoporous gold", 
      "rich surface chemistry", 
      "precious metal loading", 
      "optical properties", 
      "porous network structure", 
      "fuel cell technology", 
      "outstanding optical properties", 
      "unique structural properties", 
      "electrocatalytic investigations", 
      "surface chemistry", 
      "efficient electrocatalysts", 
      "heterogeneous catalysis", 
      "electrode materials", 
      "biomolecular diagnostics", 
      "further functionalization", 
      "surface functionalization", 
      "metal loading", 
      "functional materials", 
      "biomolecular sensing", 
      "advanced electron microscopy", 
      "important reactions", 
      "high corrosion resistance", 
      "related materials", 
      "Raman scattering", 
      "structural properties", 
      "optical applications", 
      "functionalization", 
      "chemical inspection", 
      "electron microscopy", 
      "corrosion resistance", 
      "affordable substrates", 
      "mechanical rigidity", 
      "metals", 
      "cell technology", 
      "electrical conductivity", 
      "great potential", 
      "glucose oxidation", 
      "instrumentation applications", 
      "plasmonics", 
      "electrocatalysis", 
      "electrocatalysts", 
      "properties", 
      "network structure", 
      "catalysis", 
      "key morphological parameters", 
      "chemistry", 
      "quantitative characterization", 
      "materials", 
      "recent advances", 
      "oxidation", 
      "intricate structure", 
      "three-dimensional tomographic reconstruction", 
      "Pt", 
      "gold", 
      "structure", 
      "reaction", 
      "CO", 
      "nanometers", 
      "tomographic reconstruction", 
      "wide range", 
      "microscopy", 
      "conductivity", 
      "applications", 
      "characterization", 
      "microstructure", 
      "substrate", 
      "feature dimension", 
      "loading", 
      "scattering", 
      "sensing", 
      "investigation", 
      "microns", 
      "rigidity", 
      "inspection", 
      "potential", 
      "range", 
      "technology", 
      "parameters", 
      "promise", 
      "morphological parameters", 
      "diagnostics", 
      "resistance", 
      "advances", 
      "future investigations", 
      "class", 
      "dimensions", 
      "area", 
      "reconstruction", 
      "article", 
      "perspective", 
      "discussion"
    ], 
    "name": "Nanoporous Metals for Catalytic and Optical Applications", 
    "pagination": "569-576", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067969635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/mrs2009.156"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/mrs2009.156", 
      "https://app.dimensions.ai/details/publication/pub.1067969635"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/mrs2009.156"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/mrs2009.156'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/mrs2009.156'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/mrs2009.156'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/mrs2009.156'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      133 URIs      112 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/mrs2009.156 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0303
4 anzsrc-for:0306
5 anzsrc-for:09
6 anzsrc-for:0912
7 schema:author N78140404b3bf42478a9d7e7b38060025
8 schema:citation sg:pub.10.1007/bf03215223
9 sg:pub.10.1007/s10562-007-9344-x
10 sg:pub.10.1023/b:catl.0000038585.12878.9a
11 sg:pub.10.1038/282597a0
12 sg:pub.10.1038/35068529
13 sg:pub.10.1038/4371098a
14 sg:pub.10.1557/jmr.2003.0030
15 sg:pub.10.1557/proc-451-93
16 sg:pub.10.1557/s0883769400052647
17 schema:datePublished 2009-08
18 schema:datePublishedReg 2009-08-01
19 schema:description Abstract Nanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N461583662b5540e78c3dd1164fd84943
23 Na4ded844592c42a08fd8a8eeb7b46cc1
24 sg:journal.1381332
25 schema:keywords CO
26 Pt
27 Raman scattering
28 advanced electron microscopy
29 advances
30 affordable substrates
31 applications
32 area
33 article
34 bare nanoporous gold
35 biomolecular diagnostics
36 biomolecular sensing
37 catalysis
38 cell technology
39 characterization
40 chemical inspection
41 chemistry
42 class
43 conductivity
44 corrosion resistance
45 diagnostics
46 dimensions
47 discussion
48 efficient electrocatalysts
49 electrical conductivity
50 electrocatalysis
51 electrocatalysts
52 electrocatalytic investigations
53 electrode materials
54 electron microscopy
55 feature dimension
56 fuel cell electrode materials
57 fuel cell technology
58 functional materials
59 functionalization
60 further functionalization
61 future investigations
62 glucose oxidation
63 gold
64 great potential
65 heterogeneous catalysis
66 high corrosion resistance
67 important reactions
68 inspection
69 instrumentation applications
70 intricate structure
71 investigation
72 key morphological parameters
73 loading
74 low precious metal loading
75 materials
76 mechanical rigidity
77 metal loading
78 metals
79 microns
80 microscopy
81 microstructure
82 morphological parameters
83 nanometers
84 nanoporous gold
85 nanoporous metals
86 network structure
87 optical applications
88 optical properties
89 outstanding optical properties
90 oxidation
91 parameters
92 perspective
93 plasmonics
94 porous network structure
95 potential
96 precious metal loading
97 promise
98 properties
99 quantitative characterization
100 range
101 reaction
102 recent advances
103 reconstruction
104 related materials
105 resistance
106 rich surface chemistry
107 rigidity
108 scattering
109 sensing
110 structural properties
111 structure
112 substrate
113 surface chemistry
114 surface functionalization
115 surface-enhanced Raman scattering
116 technology
117 three-dimensional tomographic reconstruction
118 tomographic reconstruction
119 unique structural properties
120 wide range
121 schema:name Nanoporous Metals for Catalytic and Optical Applications
122 schema:pagination 569-576
123 schema:productId N6e0373742c9e4f869cc92dd3fc3f6e4f
124 Nd34f989ffb154d6c9277a7337891aea6
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969635
126 https://doi.org/10.1557/mrs2009.156
127 schema:sdDatePublished 2022-11-24T20:53
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher Nd1488c65ae3649ff904ade8b941afc46
130 schema:url https://doi.org/10.1557/mrs2009.156
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N3c46b64231e54bee959744734be05659 rdf:first sg:person.01111213505.34
135 rdf:rest rdf:nil
136 N461583662b5540e78c3dd1164fd84943 schema:issueNumber 8
137 rdf:type schema:PublicationIssue
138 N6e0373742c9e4f869cc92dd3fc3f6e4f schema:name dimensions_id
139 schema:value pub.1067969635
140 rdf:type schema:PropertyValue
141 N78140404b3bf42478a9d7e7b38060025 rdf:first sg:person.0777447511.55
142 rdf:rest N3c46b64231e54bee959744734be05659
143 Na4ded844592c42a08fd8a8eeb7b46cc1 schema:volumeNumber 34
144 rdf:type schema:PublicationVolume
145 Nd1488c65ae3649ff904ade8b941afc46 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Nd34f989ffb154d6c9277a7337891aea6 schema:name doi
148 schema:value 10.1557/mrs2009.156
149 rdf:type schema:PropertyValue
150 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
151 schema:name Chemical Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
154 schema:name Inorganic Chemistry
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
157 schema:name Macromolecular and Materials Chemistry
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
160 schema:name Physical Chemistry (incl. Structural)
161 rdf:type schema:DefinedTerm
162 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
163 schema:name Engineering
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
166 schema:name Materials Engineering
167 rdf:type schema:DefinedTerm
168 sg:journal.1381332 schema:issn 0883-7694
169 1938-1425
170 schema:name MRS Bulletin
171 schema:publisher Springer Nature
172 rdf:type schema:Periodical
173 sg:person.01111213505.34 schema:familyName Chen
174 schema:givenName Mingwei
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
176 rdf:type schema:Person
177 sg:person.0777447511.55 schema:familyName Ding
178 schema:givenName Yi
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55
180 rdf:type schema:Person
181 sg:pub.10.1007/bf03215223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035961578
182 https://doi.org/10.1007/bf03215223
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10562-007-9344-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000835752
185 https://doi.org/10.1007/s10562-007-9344-x
186 rdf:type schema:CreativeWork
187 sg:pub.10.1023/b:catl.0000038585.12878.9a schema:sameAs https://app.dimensions.ai/details/publication/pub.1039078410
188 https://doi.org/10.1023/b:catl.0000038585.12878.9a
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/282597a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041920222
191 https://doi.org/10.1038/282597a0
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/35068529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633318
194 https://doi.org/10.1038/35068529
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/4371098a schema:sameAs https://app.dimensions.ai/details/publication/pub.1000723677
197 https://doi.org/10.1038/4371098a
198 rdf:type schema:CreativeWork
199 sg:pub.10.1557/jmr.2003.0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015389966
200 https://doi.org/10.1557/jmr.2003.0030
201 rdf:type schema:CreativeWork
202 sg:pub.10.1557/proc-451-93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115925768
203 https://doi.org/10.1557/proc-451-93
204 rdf:type schema:CreativeWork
205 sg:pub.10.1557/s0883769400052647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964113
206 https://doi.org/10.1557/s0883769400052647
207 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...