Simulation of Defects and Diffusion Phenomena in Silicon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

Mark E. Law, George H. Gilmer, Martin Jaraíz

ABSTRACT

Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. More... »

PAGES

45-50

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/mrs2000.98

DOI

http://dx.doi.org/10.1557/mrs2000.98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067967694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Law", 
        "givenName": "Mark E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gilmer", 
        "givenName": "George H.", 
        "id": "sg:person.015033111231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033111231.72"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jara\u00edz", 
        "givenName": "Martin", 
        "id": "sg:person.010212660551.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212660551.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/33369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020120119", 
          "https://doi.org/10.1038/33369"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-06", 
    "datePublishedReg": "2000-06-01", 
    "description": " Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/mrs2000.98", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381332", 
        "issn": [
          "0883-7694", 
          "1938-1425"
        ], 
        "name": "MRS Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "Monte Carlo", 
      "vertical doping profiles", 
      "entire process flow", 
      "cost of fabrication", 
      "front-end processing", 
      "doping profile", 
      "material parameters", 
      "process simulation", 
      "hierarchy of tools", 
      "process flow", 
      "today's electronics", 
      "process steps", 
      "simulation of defects", 
      "silicon lattice", 
      "technology generation", 
      "diffusion phenomena", 
      "simulations", 
      "electronics", 
      "technology development", 
      "modern devices", 
      "molecular dynamics code", 
      "fabrication", 
      "silicon", 
      "level of detail", 
      "Carlo", 
      "devices", 
      "physics", 
      "Continuum Codes", 
      "flow", 
      "critical component", 
      "optimization", 
      "code", 
      "effective tool", 
      "lattice", 
      "ab initio", 
      "only effective tool", 
      "parameters", 
      "processing", 
      "cost", 
      "calculations", 
      "generation", 
      "characterization", 
      "experiments", 
      "phenomenon", 
      "defects", 
      "test", 
      "order", 
      "detail", 
      "tool", 
      "components", 
      "step", 
      "hierarchy", 
      "initio", 
      "profile", 
      "Particle Reactions", 
      "use", 
      "information", 
      "reaction", 
      "mechanism", 
      "development", 
      "couples", 
      "reasons", 
      "insights", 
      "critical mechanism", 
      "levels"
    ], 
    "name": "Simulation of Defects and Diffusion Phenomena in Silicon", 
    "pagination": "45-50", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067967694"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/mrs2000.98"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/mrs2000.98", 
      "https://app.dimensions.ai/details/publication/pub.1067967694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_311.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/mrs2000.98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      91 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/mrs2000.98 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N60e2df1f514b43c78e161364e222d4ea
4 schema:citation sg:pub.10.1038/33369
5 schema:datePublished 2000-06
6 schema:datePublishedReg 2000-06-01
7 schema:description Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N68d45c4127794a5ebbf6213b4e29eb1c
11 Na19d5a4fdea64ec4b2b180391d4fbd30
12 sg:journal.1381332
13 schema:keywords Carlo
14 Continuum Codes
15 Monte Carlo
16 Particle Reactions
17 ab initio
18 calculations
19 characterization
20 code
21 components
22 cost
23 cost of fabrication
24 couples
25 critical component
26 critical mechanism
27 defects
28 detail
29 development
30 devices
31 diffusion phenomena
32 doping profile
33 effective tool
34 electronics
35 entire process flow
36 experiments
37 fabrication
38 flow
39 front-end processing
40 generation
41 hierarchy
42 hierarchy of tools
43 information
44 initio
45 insights
46 lattice
47 level of detail
48 levels
49 material parameters
50 mechanism
51 modern devices
52 molecular dynamics code
53 only effective tool
54 optimization
55 order
56 parameters
57 phenomenon
58 physics
59 process flow
60 process simulation
61 process steps
62 processing
63 profile
64 reaction
65 reasons
66 silicon
67 silicon lattice
68 simulation of defects
69 simulations
70 step
71 technology development
72 technology generation
73 test
74 today's electronics
75 tool
76 use
77 vertical doping profiles
78 schema:name Simulation of Defects and Diffusion Phenomena in Silicon
79 schema:pagination 45-50
80 schema:productId Nab60cacba64d4abea9a0e2fdd817d052
81 Nbd1f3f8081d64c8a83bff3e076caa440
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967694
83 https://doi.org/10.1557/mrs2000.98
84 schema:sdDatePublished 2022-08-04T16:54
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N14ba24ed63284ee3b1aa2bb64ab9416c
87 schema:url https://doi.org/10.1557/mrs2000.98
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0e7f249c833740078dc289998a7db65a rdf:first sg:person.010212660551.62
92 rdf:rest rdf:nil
93 N14ba24ed63284ee3b1aa2bb64ab9416c schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N4d1bc8822a8548b1beece8655cc7cf88 schema:familyName Law
96 schema:givenName Mark E.
97 rdf:type schema:Person
98 N60e2df1f514b43c78e161364e222d4ea rdf:first N4d1bc8822a8548b1beece8655cc7cf88
99 rdf:rest Na1813308b4014743bd28dd0e71cce88a
100 N68d45c4127794a5ebbf6213b4e29eb1c schema:volumeNumber 25
101 rdf:type schema:PublicationVolume
102 Na1813308b4014743bd28dd0e71cce88a rdf:first sg:person.015033111231.72
103 rdf:rest N0e7f249c833740078dc289998a7db65a
104 Na19d5a4fdea64ec4b2b180391d4fbd30 schema:issueNumber 6
105 rdf:type schema:PublicationIssue
106 Nab60cacba64d4abea9a0e2fdd817d052 schema:name dimensions_id
107 schema:value pub.1067967694
108 rdf:type schema:PropertyValue
109 Nbd1f3f8081d64c8a83bff3e076caa440 schema:name doi
110 schema:value 10.1557/mrs2000.98
111 rdf:type schema:PropertyValue
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
116 schema:name Theoretical and Computational Chemistry
117 rdf:type schema:DefinedTerm
118 sg:journal.1381332 schema:issn 0883-7694
119 1938-1425
120 schema:name MRS Bulletin
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.010212660551.62 schema:familyName Jaraíz
124 schema:givenName Martin
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212660551.62
126 rdf:type schema:Person
127 sg:person.015033111231.72 schema:familyName Gilmer
128 schema:givenName George H.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033111231.72
130 rdf:type schema:Person
131 sg:pub.10.1038/33369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020120119
132 https://doi.org/10.1038/33369
133 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...