Simulation of Defects and Diffusion Phenomena in Silicon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-06

AUTHORS

Mark E. Law, George H. Gilmer, Martin Jaraíz

ABSTRACT

Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. More... »

PAGES

45-50

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/mrs2000.98

DOI

http://dx.doi.org/10.1557/mrs2000.98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1067967694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Law", 
        "givenName": "Mark E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gilmer", 
        "givenName": "George H.", 
        "id": "sg:person.015033111231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033111231.72"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jara\u00edz", 
        "givenName": "Martin", 
        "id": "sg:person.010212660551.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212660551.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/33369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020120119", 
          "https://doi.org/10.1038/33369"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-06", 
    "datePublishedReg": "2000-06-01", 
    "description": " Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/mrs2000.98", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1381332", 
        "issn": [
          "0883-7694", 
          "1938-1425"
        ], 
        "name": "MRS Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "Monte Carlo", 
      "vertical doping profiles", 
      "entire process flow", 
      "cost of fabrication", 
      "front-end processing", 
      "doping profile", 
      "material parameters", 
      "process simulation", 
      "hierarchy of tools", 
      "process flow", 
      "today's electronics", 
      "process steps", 
      "simulation of defects", 
      "silicon lattice", 
      "technology generation", 
      "diffusion phenomena", 
      "simulations", 
      "electronics", 
      "technology development", 
      "modern devices", 
      "molecular dynamics code", 
      "fabrication", 
      "silicon", 
      "level of detail", 
      "Carlo", 
      "devices", 
      "physics", 
      "Continuum Codes", 
      "flow", 
      "critical component", 
      "optimization", 
      "code", 
      "effective tool", 
      "lattice", 
      "ab initio", 
      "only effective tool", 
      "parameters", 
      "processing", 
      "cost", 
      "calculations", 
      "generation", 
      "characterization", 
      "experiments", 
      "phenomenon", 
      "defects", 
      "test", 
      "order", 
      "detail", 
      "tool", 
      "components", 
      "step", 
      "hierarchy", 
      "initio", 
      "profile", 
      "Particle Reactions", 
      "use", 
      "information", 
      "reaction", 
      "mechanism", 
      "development", 
      "couples", 
      "reasons", 
      "insights", 
      "critical mechanism", 
      "levels"
    ], 
    "name": "Simulation of Defects and Diffusion Phenomena in Silicon", 
    "pagination": "45-50", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1067967694"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/mrs2000.98"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/mrs2000.98", 
      "https://app.dimensions.ai/details/publication/pub.1067967694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_311.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/mrs2000.98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      91 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/mrs2000.98 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N94a01c40cce943a5b064896540e0de64
4 schema:citation sg:pub.10.1038/33369
5 schema:datePublished 2000-06
6 schema:datePublishedReg 2000-06-01
7 schema:description Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N3e49d11450524a9383462b24779f3f21
11 N95d71935d9f04c73b18b26993e336d15
12 sg:journal.1381332
13 schema:keywords Carlo
14 Continuum Codes
15 Monte Carlo
16 Particle Reactions
17 ab initio
18 calculations
19 characterization
20 code
21 components
22 cost
23 cost of fabrication
24 couples
25 critical component
26 critical mechanism
27 defects
28 detail
29 development
30 devices
31 diffusion phenomena
32 doping profile
33 effective tool
34 electronics
35 entire process flow
36 experiments
37 fabrication
38 flow
39 front-end processing
40 generation
41 hierarchy
42 hierarchy of tools
43 information
44 initio
45 insights
46 lattice
47 level of detail
48 levels
49 material parameters
50 mechanism
51 modern devices
52 molecular dynamics code
53 only effective tool
54 optimization
55 order
56 parameters
57 phenomenon
58 physics
59 process flow
60 process simulation
61 process steps
62 processing
63 profile
64 reaction
65 reasons
66 silicon
67 silicon lattice
68 simulation of defects
69 simulations
70 step
71 technology development
72 technology generation
73 test
74 today's electronics
75 tool
76 use
77 vertical doping profiles
78 schema:name Simulation of Defects and Diffusion Phenomena in Silicon
79 schema:pagination 45-50
80 schema:productId N08fd723cc7164d2ea0529b4a6d13b957
81 N1a0484b53e784a57aee40996e2625df7
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967694
83 https://doi.org/10.1557/mrs2000.98
84 schema:sdDatePublished 2022-08-04T16:54
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Ndc90cee46e3446708dbc627e8341e42b
87 schema:url https://doi.org/10.1557/mrs2000.98
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N08fd723cc7164d2ea0529b4a6d13b957 schema:name dimensions_id
92 schema:value pub.1067967694
93 rdf:type schema:PropertyValue
94 N1a0484b53e784a57aee40996e2625df7 schema:name doi
95 schema:value 10.1557/mrs2000.98
96 rdf:type schema:PropertyValue
97 N3e49d11450524a9383462b24779f3f21 schema:issueNumber 6
98 rdf:type schema:PublicationIssue
99 N486fd98d78e64abc9001797f0b901492 rdf:first sg:person.010212660551.62
100 rdf:rest rdf:nil
101 N772315508b244768b52beed5f65f513e schema:familyName Law
102 schema:givenName Mark E.
103 rdf:type schema:Person
104 N94a01c40cce943a5b064896540e0de64 rdf:first N772315508b244768b52beed5f65f513e
105 rdf:rest Ned6dcd5fb5454e7c8d4b9c974bf866d5
106 N95d71935d9f04c73b18b26993e336d15 schema:volumeNumber 25
107 rdf:type schema:PublicationVolume
108 Ndc90cee46e3446708dbc627e8341e42b schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Ned6dcd5fb5454e7c8d4b9c974bf866d5 rdf:first sg:person.015033111231.72
111 rdf:rest N486fd98d78e64abc9001797f0b901492
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
116 schema:name Theoretical and Computational Chemistry
117 rdf:type schema:DefinedTerm
118 sg:journal.1381332 schema:issn 0883-7694
119 1938-1425
120 schema:name MRS Bulletin
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.010212660551.62 schema:familyName Jaraíz
124 schema:givenName Martin
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212660551.62
126 rdf:type schema:Person
127 sg:person.015033111231.72 schema:familyName Gilmer
128 schema:givenName George H.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033111231.72
130 rdf:type schema:Person
131 sg:pub.10.1038/33369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020120119
132 https://doi.org/10.1038/33369
133 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...