Ontology type: schema:ScholarlyArticle
2000-06
AUTHORSMark E. Law, George H. Gilmer, Martin Jaraíz
ABSTRACTSimulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. More... »
PAGES45-50
http://scigraph.springernature.com/pub.10.1557/mrs2000.98
DOIhttp://dx.doi.org/10.1557/mrs2000.98
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1067967694
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Theoretical and Computational Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"familyName": "Law",
"givenName": "Mark E.",
"type": "Person"
},
{
"familyName": "Gilmer",
"givenName": "George H.",
"id": "sg:person.015033111231.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033111231.72"
],
"type": "Person"
},
{
"familyName": "Jara\u00edz",
"givenName": "Martin",
"id": "sg:person.010212660551.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212660551.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/33369",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020120119",
"https://doi.org/10.1038/33369"
],
"type": "CreativeWork"
}
],
"datePublished": "2000-06",
"datePublishedReg": "2000-06-01",
"description": " Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. ",
"genre": "article",
"id": "sg:pub.10.1557/mrs2000.98",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1381332",
"issn": [
"0883-7694",
"1938-1425"
],
"name": "MRS Bulletin",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "25"
}
],
"keywords": [
"Monte Carlo",
"vertical doping profiles",
"entire process flow",
"cost of fabrication",
"front-end processing",
"doping profile",
"material parameters",
"process simulation",
"hierarchy of tools",
"process flow",
"today's electronics",
"process steps",
"simulation of defects",
"silicon lattice",
"technology generation",
"diffusion phenomena",
"simulations",
"electronics",
"technology development",
"modern devices",
"molecular dynamics code",
"fabrication",
"silicon",
"level of detail",
"Carlo",
"devices",
"physics",
"Continuum Codes",
"flow",
"critical component",
"optimization",
"code",
"effective tool",
"lattice",
"ab initio",
"only effective tool",
"parameters",
"processing",
"cost",
"calculations",
"generation",
"characterization",
"experiments",
"phenomenon",
"defects",
"test",
"order",
"detail",
"tool",
"components",
"step",
"hierarchy",
"initio",
"profile",
"Particle Reactions",
"use",
"information",
"reaction",
"mechanism",
"development",
"couples",
"reasons",
"insights",
"critical mechanism",
"levels"
],
"name": "Simulation of Defects and Diffusion Phenomena in Silicon",
"pagination": "45-50",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1067967694"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1557/mrs2000.98"
]
}
],
"sameAs": [
"https://doi.org/10.1557/mrs2000.98",
"https://app.dimensions.ai/details/publication/pub.1067967694"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_311.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1557/mrs2000.98"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/mrs2000.98'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
21 PREDICATES
91 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1557/mrs2000.98 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0307 |
3 | ″ | schema:author | N94a01c40cce943a5b064896540e0de64 |
4 | ″ | schema:citation | sg:pub.10.1038/33369 |
5 | ″ | schema:datePublished | 2000-06 |
6 | ″ | schema:datePublishedReg | 2000-06-01 |
7 | ″ | schema:description | Simulation of front-end processing is a critical component of integrated-circuit (IC) technology development. Today's electronics are so small that characterization of their material parameters is very difficult and expensive. Simulation is often the only effective tool for exploring the lateral and vertical doping profiles of a modern device at the level of detail required for optimization. Additionally, the cost of fabrication and test lots increases with each technology generation; for this reason, simulation becomes especially costeffective, if it can be made accurate. Increasingly, process simulation is being performed by harnessing a hierarchy of tools. Ab initio and molecular-dynamics (MD) codes are used to generate insight into the physics of individual particle reactions in the silicon lattice. This information can be fed to kinetic Monte Carlo (MC) codes to establish the dominant, critical mechanisms. Finally, traditional continuum codes can make use of this information and couple with the other process steps to simulate the entire process flow. Both MC and continuum codes can be compared with experiment in order to validate the calculations. |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N3e49d11450524a9383462b24779f3f21 |
11 | ″ | ″ | N95d71935d9f04c73b18b26993e336d15 |
12 | ″ | ″ | sg:journal.1381332 |
13 | ″ | schema:keywords | Carlo |
14 | ″ | ″ | Continuum Codes |
15 | ″ | ″ | Monte Carlo |
16 | ″ | ″ | Particle Reactions |
17 | ″ | ″ | ab initio |
18 | ″ | ″ | calculations |
19 | ″ | ″ | characterization |
20 | ″ | ″ | code |
21 | ″ | ″ | components |
22 | ″ | ″ | cost |
23 | ″ | ″ | cost of fabrication |
24 | ″ | ″ | couples |
25 | ″ | ″ | critical component |
26 | ″ | ″ | critical mechanism |
27 | ″ | ″ | defects |
28 | ″ | ″ | detail |
29 | ″ | ″ | development |
30 | ″ | ″ | devices |
31 | ″ | ″ | diffusion phenomena |
32 | ″ | ″ | doping profile |
33 | ″ | ″ | effective tool |
34 | ″ | ″ | electronics |
35 | ″ | ″ | entire process flow |
36 | ″ | ″ | experiments |
37 | ″ | ″ | fabrication |
38 | ″ | ″ | flow |
39 | ″ | ″ | front-end processing |
40 | ″ | ″ | generation |
41 | ″ | ″ | hierarchy |
42 | ″ | ″ | hierarchy of tools |
43 | ″ | ″ | information |
44 | ″ | ″ | initio |
45 | ″ | ″ | insights |
46 | ″ | ″ | lattice |
47 | ″ | ″ | level of detail |
48 | ″ | ″ | levels |
49 | ″ | ″ | material parameters |
50 | ″ | ″ | mechanism |
51 | ″ | ″ | modern devices |
52 | ″ | ″ | molecular dynamics code |
53 | ″ | ″ | only effective tool |
54 | ″ | ″ | optimization |
55 | ″ | ″ | order |
56 | ″ | ″ | parameters |
57 | ″ | ″ | phenomenon |
58 | ″ | ″ | physics |
59 | ″ | ″ | process flow |
60 | ″ | ″ | process simulation |
61 | ″ | ″ | process steps |
62 | ″ | ″ | processing |
63 | ″ | ″ | profile |
64 | ″ | ″ | reaction |
65 | ″ | ″ | reasons |
66 | ″ | ″ | silicon |
67 | ″ | ″ | silicon lattice |
68 | ″ | ″ | simulation of defects |
69 | ″ | ″ | simulations |
70 | ″ | ″ | step |
71 | ″ | ″ | technology development |
72 | ″ | ″ | technology generation |
73 | ″ | ″ | test |
74 | ″ | ″ | today's electronics |
75 | ″ | ″ | tool |
76 | ″ | ″ | use |
77 | ″ | ″ | vertical doping profiles |
78 | ″ | schema:name | Simulation of Defects and Diffusion Phenomena in Silicon |
79 | ″ | schema:pagination | 45-50 |
80 | ″ | schema:productId | N08fd723cc7164d2ea0529b4a6d13b957 |
81 | ″ | ″ | N1a0484b53e784a57aee40996e2625df7 |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1067967694 |
83 | ″ | ″ | https://doi.org/10.1557/mrs2000.98 |
84 | ″ | schema:sdDatePublished | 2022-08-04T16:54 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | Ndc90cee46e3446708dbc627e8341e42b |
87 | ″ | schema:url | https://doi.org/10.1557/mrs2000.98 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N08fd723cc7164d2ea0529b4a6d13b957 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1067967694 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N1a0484b53e784a57aee40996e2625df7 | schema:name | doi |
95 | ″ | schema:value | 10.1557/mrs2000.98 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N3e49d11450524a9383462b24779f3f21 | schema:issueNumber | 6 |
98 | ″ | rdf:type | schema:PublicationIssue |
99 | N486fd98d78e64abc9001797f0b901492 | rdf:first | sg:person.010212660551.62 |
100 | ″ | rdf:rest | rdf:nil |
101 | N772315508b244768b52beed5f65f513e | schema:familyName | Law |
102 | ″ | schema:givenName | Mark E. |
103 | ″ | rdf:type | schema:Person |
104 | N94a01c40cce943a5b064896540e0de64 | rdf:first | N772315508b244768b52beed5f65f513e |
105 | ″ | rdf:rest | Ned6dcd5fb5454e7c8d4b9c974bf866d5 |
106 | N95d71935d9f04c73b18b26993e336d15 | schema:volumeNumber | 25 |
107 | ″ | rdf:type | schema:PublicationVolume |
108 | Ndc90cee46e3446708dbc627e8341e42b | schema:name | Springer Nature - SN SciGraph project |
109 | ″ | rdf:type | schema:Organization |
110 | Ned6dcd5fb5454e7c8d4b9c974bf866d5 | rdf:first | sg:person.015033111231.72 |
111 | ″ | rdf:rest | N486fd98d78e64abc9001797f0b901492 |
112 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Chemical Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0307 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Theoretical and Computational Chemistry |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:journal.1381332 | schema:issn | 0883-7694 |
119 | ″ | ″ | 1938-1425 |
120 | ″ | schema:name | MRS Bulletin |
121 | ″ | schema:publisher | Springer Nature |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.010212660551.62 | schema:familyName | Jaraíz |
124 | ″ | schema:givenName | Martin |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212660551.62 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.015033111231.72 | schema:familyName | Gilmer |
128 | ″ | schema:givenName | George H. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033111231.72 |
130 | ″ | rdf:type | schema:Person |
131 | sg:pub.10.1038/33369 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020120119 |
132 | ″ | ″ | https://doi.org/10.1038/33369 |
133 | ″ | rdf:type | schema:CreativeWork |