The size effect in the mechanical strength of semiconductors and metals: Strain relaxation by dislocation-mediated plastic deformation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-11

AUTHORS

David J. Dunstan

ABSTRACT

The Ph.D. work of Jan H. van der Merwe in 1949 established a new paradigm for the understanding of dislocation dynamics in restricted volumes. This led to a comprehensive understanding of plasticity, or strain relaxation, in the context of strained-layer semiconductor structures. However, this understanding was largely overlooked in the context of traditional metallurgy and micromechanics. We identify four reasons for this, the apparent need for an unstrained substrate in van der Merwe’s theory, the supposed inapplicability to strain gradients, the supposed inapplicability to the Hall–Petch effect (dependence of strength on the inverse square root of grain size), and an emphasis on understanding strain hardening rather than the yield point. Addressing these four points in particular, here it is shown how the insights of van der Merwe and of the earlier work by Lawrence Bragg lead to a coherent and unified view of the size-effect phenomena ranging from the Hall–Petch effect to the strain-gradient plasticity theory. More... »

PAGES

4041-4053

References to SciGraph publications

  • 1997-12. Strain and strain relaxation in semiconductors in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 1993-02. The yield stress of polycrystalline thin films in JOURNAL OF MATERIALS RESEARCH
  • 1989-11. Mechanical properties of thin films in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1934-09. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1934-09. Zur Kristallplastizität. III in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1970-09. The grain size dependence of the yield, flow and fracture stress of commercial purity silver in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1942-05. A Theory of the Strength of Metals in NATURE
  • 2007-12-23. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals in NATURE MATERIALS
  • 2011-10-24. The conflicts between strength and toughness in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1557/jmr.2017.300

    DOI

    http://dx.doi.org/10.1557/jmr.2017.300

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091189762


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.4868.2", 
              "name": [
                "School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dunstan", 
            "givenName": "David J.", 
            "id": "sg:person.016646041113.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1018547625106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000704560", 
              "https://doi.org/10.1023/a:1018547625106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01341480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018397825", 
              "https://doi.org/10.1007/bf01341480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.1993.0237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043848982", 
              "https://doi.org/10.1557/jmr.1993.0237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02666659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028696296", 
              "https://doi.org/10.1007/bf02666659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03038382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086068090", 
              "https://doi.org/10.1007/bf03038382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01341481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018444037", 
              "https://doi.org/10.1007/bf01341481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031559688", 
              "https://doi.org/10.1038/nmat2085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/149511a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044079095", 
              "https://doi.org/10.1038/149511a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004166204", 
              "https://doi.org/10.1038/nmat3115"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08-11", 
        "datePublishedReg": "2017-08-11", 
        "description": "Abstract     \nThe Ph.D. work of Jan H. van der Merwe in 1949 established a new paradigm for the understanding of dislocation dynamics in restricted volumes. This led to a comprehensive understanding of plasticity, or strain relaxation, in the context of strained-layer semiconductor structures. However, this understanding was largely overlooked in the context of traditional metallurgy and micromechanics. We identify four reasons for this, the apparent need for an unstrained substrate in van der Merwe\u2019s theory, the supposed inapplicability to strain gradients, the supposed inapplicability to the Hall\u2013Petch effect (dependence of strength on the inverse square root of grain size), and an emphasis on understanding strain hardening rather than the yield point. Addressing these four points in particular, here it is shown how the insights of van der Merwe and of the earlier work by Lawrence Bragg lead to a coherent and unified view of the size-effect phenomena ranging from the Hall\u2013Petch effect to the strain-gradient plasticity theory.", 
        "genre": "article", 
        "id": "sg:pub.10.1557/jmr.2017.300", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1357547", 
            "issn": [
              "0884-2914", 
              "2044-5326"
            ], 
            "name": "Journal of Materials Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "21", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "Hall\u2013Petch effect", 
          "strain gradient plasticity theory", 
          "dislocation-mediated plastic deformation", 
          "size effect phenomenon", 
          "plastic deformation", 
          "mechanical strength", 
          "traditional metallurgy", 
          "plasticity theory", 
          "semiconductor structures", 
          "yield point", 
          "dislocation dynamics", 
          "size effect", 
          "van der Merwe\u2019s theory", 
          "micromechanics", 
          "metallurgy", 
          "deformation", 
          "semiconductors", 
          "strength", 
          "metals", 
          "van der Merwe", 
          "work", 
          "substrate", 
          "inapplicability", 
          "relaxation", 
          "Merwe", 
          "gradient", 
          "effect", 
          "comprehensive understanding", 
          "point", 
          "Bragg", 
          "structure", 
          "phenomenon", 
          "theory", 
          "earlier work", 
          "dynamics", 
          "new paradigm", 
          "volume", 
          "Van", 
          "strains", 
          "plasticity", 
          "Abstract", 
          "unified view", 
          "emphasis", 
          "understanding", 
          "reasons", 
          "Ph.D. work", 
          "apparent need", 
          "need", 
          "view", 
          "insights", 
          "context", 
          "Lawrence Bragg", 
          "paradigm"
        ], 
        "name": "The size effect in the mechanical strength of semiconductors and metals: Strain relaxation by dislocation-mediated plastic deformation", 
        "pagination": "4041-4053", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091189762"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1557/jmr.2017.300"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1557/jmr.2017.300", 
          "https://app.dimensions.ai/details/publication/pub.1091189762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_727.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1557/jmr.2017.300"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2017.300'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2017.300'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2017.300'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2017.300'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      22 PREDICATES      87 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1557/jmr.2017.300 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N7b5b63d449c24de9a6a46cf6ca757b3a
    4 schema:citation sg:pub.10.1007/bf01341480
    5 sg:pub.10.1007/bf01341481
    6 sg:pub.10.1007/bf02666659
    7 sg:pub.10.1007/bf03038382
    8 sg:pub.10.1023/a:1018547625106
    9 sg:pub.10.1038/149511a0
    10 sg:pub.10.1038/nmat2085
    11 sg:pub.10.1038/nmat3115
    12 sg:pub.10.1557/jmr.1993.0237
    13 schema:datePublished 2017-08-11
    14 schema:datePublishedReg 2017-08-11
    15 schema:description Abstract The Ph.D. work of Jan H. van der Merwe in 1949 established a new paradigm for the understanding of dislocation dynamics in restricted volumes. This led to a comprehensive understanding of plasticity, or strain relaxation, in the context of strained-layer semiconductor structures. However, this understanding was largely overlooked in the context of traditional metallurgy and micromechanics. We identify four reasons for this, the apparent need for an unstrained substrate in van der Merwe’s theory, the supposed inapplicability to strain gradients, the supposed inapplicability to the Hall–Petch effect (dependence of strength on the inverse square root of grain size), and an emphasis on understanding strain hardening rather than the yield point. Addressing these four points in particular, here it is shown how the insights of van der Merwe and of the earlier work by Lawrence Bragg lead to a coherent and unified view of the size-effect phenomena ranging from the Hall–Petch effect to the strain-gradient plasticity theory.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf Nc4125e3ba81040c7b4cf6eed41b1b179
    20 Nd2d7b718282f4d39b97fa00c4c7fbc47
    21 sg:journal.1357547
    22 schema:keywords Abstract
    23 Bragg
    24 Hall–Petch effect
    25 Lawrence Bragg
    26 Merwe
    27 Ph.D. work
    28 Van
    29 apparent need
    30 comprehensive understanding
    31 context
    32 deformation
    33 dislocation dynamics
    34 dislocation-mediated plastic deformation
    35 dynamics
    36 earlier work
    37 effect
    38 emphasis
    39 gradient
    40 inapplicability
    41 insights
    42 mechanical strength
    43 metallurgy
    44 metals
    45 micromechanics
    46 need
    47 new paradigm
    48 paradigm
    49 phenomenon
    50 plastic deformation
    51 plasticity
    52 plasticity theory
    53 point
    54 reasons
    55 relaxation
    56 semiconductor structures
    57 semiconductors
    58 size effect
    59 size effect phenomenon
    60 strain gradient plasticity theory
    61 strains
    62 strength
    63 structure
    64 substrate
    65 theory
    66 traditional metallurgy
    67 understanding
    68 unified view
    69 van der Merwe
    70 van der Merwe’s theory
    71 view
    72 volume
    73 work
    74 yield point
    75 schema:name The size effect in the mechanical strength of semiconductors and metals: Strain relaxation by dislocation-mediated plastic deformation
    76 schema:pagination 4041-4053
    77 schema:productId N540cd679a08b44a2abacc530484d606d
    78 Ned3686a1783b44e0b84b9a945eb89957
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091189762
    80 https://doi.org/10.1557/jmr.2017.300
    81 schema:sdDatePublished 2022-06-01T22:15
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher Nf15e3d219fc246689961feea1352dce1
    84 schema:url https://doi.org/10.1557/jmr.2017.300
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N540cd679a08b44a2abacc530484d606d schema:name doi
    89 schema:value 10.1557/jmr.2017.300
    90 rdf:type schema:PropertyValue
    91 N7b5b63d449c24de9a6a46cf6ca757b3a rdf:first sg:person.016646041113.50
    92 rdf:rest rdf:nil
    93 Nc4125e3ba81040c7b4cf6eed41b1b179 schema:issueNumber 21
    94 rdf:type schema:PublicationIssue
    95 Nd2d7b718282f4d39b97fa00c4c7fbc47 schema:volumeNumber 32
    96 rdf:type schema:PublicationVolume
    97 Ned3686a1783b44e0b84b9a945eb89957 schema:name dimensions_id
    98 schema:value pub.1091189762
    99 rdf:type schema:PropertyValue
    100 Nf15e3d219fc246689961feea1352dce1 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Engineering
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Materials Engineering
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1357547 schema:issn 0884-2914
    109 2044-5326
    110 schema:name Journal of Materials Research
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.016646041113.50 schema:affiliation grid-institutes:grid.4868.2
    114 schema:familyName Dunstan
    115 schema:givenName David J.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646041113.50
    117 rdf:type schema:Person
    118 sg:pub.10.1007/bf01341480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018397825
    119 https://doi.org/10.1007/bf01341480
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf01341481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018444037
    122 https://doi.org/10.1007/bf01341481
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf02666659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028696296
    125 https://doi.org/10.1007/bf02666659
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf03038382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086068090
    128 https://doi.org/10.1007/bf03038382
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1023/a:1018547625106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000704560
    131 https://doi.org/10.1023/a:1018547625106
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/149511a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044079095
    134 https://doi.org/10.1038/149511a0
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nmat2085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031559688
    137 https://doi.org/10.1038/nmat2085
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nmat3115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004166204
    140 https://doi.org/10.1038/nmat3115
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1557/jmr.1993.0237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043848982
    143 https://doi.org/10.1557/jmr.1993.0237
    144 rdf:type schema:CreativeWork
    145 grid-institutes:grid.4868.2 schema:alternateName School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K.
    146 schema:name School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K.
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...