Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08-25

AUTHORS

Pan Gong, Shaofan Zhao, Hongyu Ding, Kefu Yao, Xin Wang

ABSTRACT

The nonisothermal crystallization kinetics, fragility, and thermodynamics of Ti 20 Zr 20 Cu 20 Ni 20 Be 20 high entropy bulk metallic glass (HE-BMG) have been investigated by differential scanning calorimetry. The activation energies for the glass transition and crystallization events were determined by Kissinger and Ozawa methods. The value of local Avrami exponent is less than 1.5 in most cases for all the three crystallization events, indicating that the major crystallization mechanism is diffusion-controlled growth of pre-existing nuclei. The local activation energy is stable during the whole crystallization process and this further confirms that the crystallization occurs through a single mechanism. Ti 20 Zr 20 Cu 20 Ni 20 Be 20 alloy can be classified into “strong glass formers” according to the estimated fragility index and also shows a relatively low value of Gibbs free energy difference. However, compared with Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 BMG, the glass-forming ability of Ti 20 Zr 20 Cu 20 Ni 20 Be 20 HE-BMG is much lower and the related reasons have been discussed. More... »

PAGES

2772-2782

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.2015.253

DOI

http://dx.doi.org/10.1557/jmr.2015.253

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013347567


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Pan", 
        "id": "sg:person.014726145053.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726145053.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shaofan", 
        "id": "sg:person.014737746615.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737746615.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Hongyu", 
        "id": "sg:person.07563624647.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07563624647.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Kefu", 
        "id": "sg:person.010571403552.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010571403552.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Hebei University of Technology, Hongqiao District, Tianjin 300130, China", 
          "id": "http://www.grid.ac/institutes/grid.412030.4", 
          "name": [
            "School of Materials Science and Engineering, Hebei University of Technology, Hongqiao District, Tianjin 300130, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xin", 
        "id": "sg:person.016215435721.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016215435721.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-012-0366-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050266430", 
          "https://doi.org/10.1007/s11837-012-0366-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12034-014-0621-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039314516", 
          "https://doi.org/10.1007/s12034-014-0621-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-011-1549-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030455411", 
          "https://doi.org/10.1007/s10973-011-1549-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-010-0131-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021995046", 
          "https://doi.org/10.1007/s11433-010-0131-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01113575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126009", 
          "https://doi.org/10.1007/bf01113575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-015-9182-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021869258", 
          "https://doi.org/10.1007/s00339-015-9182-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01911411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020362867", 
          "https://doi.org/10.1007/bf01911411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-014-1002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036605094", 
          "https://doi.org/10.1007/s11837-014-1002-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08-25", 
    "datePublishedReg": "2015-08-25", 
    "description": "Abstract     \n The nonisothermal crystallization kinetics, fragility, and thermodynamics of Ti 20 Zr 20 Cu 20 Ni 20 Be 20 high entropy bulk metallic glass (HE-BMG) have been investigated by differential scanning calorimetry. The activation energies for the glass transition and crystallization events were determined by Kissinger and Ozawa methods. The value of local Avrami exponent is less than 1.5 in most cases for all the three crystallization events, indicating that the major crystallization mechanism is diffusion-controlled growth of pre-existing nuclei. The local activation energy is stable during the whole crystallization process and this further confirms that the crystallization occurs through a single mechanism. Ti 20 Zr 20 Cu 20 Ni 20 Be 20 alloy can be classified into \u201cstrong glass formers\u201d according to the estimated fragility index and also shows a relatively low value of Gibbs free energy difference. However, compared with Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 BMG, the glass-forming ability of Ti 20 Zr 20 Cu 20 Ni 20 Be 20 HE-BMG is much lower and the related reasons have been discussed. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.2015.253", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7176047", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7001440", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "18", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "differential scanning calorimetry", 
      "activation energy", 
      "Gibbs free energy difference", 
      "free energy difference", 
      "crystallization kinetics", 
      "scanning calorimetry", 
      "crystallization events", 
      "nonisothermal crystallization kinetics", 
      "whole crystallization process", 
      "strong glass formers", 
      "energy difference", 
      "glass transition", 
      "crystallization mechanism", 
      "crystallization process", 
      "glass formers", 
      "Ozawa method", 
      "kinetics", 
      "thermodynamics", 
      "fragility index", 
      "Ni-20", 
      "diffusion-controlled growth", 
      "glass", 
      "calorimetry", 
      "Avrami exponent", 
      "crystallization", 
      "glass-forming ability", 
      "metallic glasses", 
      "energy", 
      "Kissinger", 
      "local activation energy", 
      "mechanism", 
      "bulk metallic glass", 
      "formers", 
      "lower values", 
      "transition", 
      "values", 
      "pre-existing nuclei", 
      "process", 
      "single mechanism", 
      "method", 
      "most cases", 
      "nucleus", 
      "alloy", 
      "ability", 
      "fragility", 
      "growth", 
      "BMG", 
      "high entropy bulk metallic glass", 
      "exponent", 
      "HE-BMG", 
      "Abstract", 
      "reasons", 
      "events", 
      "local Avrami exponent", 
      "cases", 
      "index", 
      "differences", 
      "related reasons"
    ], 
    "name": "Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass", 
    "pagination": "2772-2782", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013347567"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.2015.253"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.2015.253", 
      "https://app.dimensions.ai/details/publication/pub.1013347567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_651.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.2015.253"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2015.253'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2015.253'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2015.253'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2015.253'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      90 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.2015.253 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne5ef2f3141754a66bb3d742def0ff703
4 schema:citation sg:pub.10.1007/bf01113575
5 sg:pub.10.1007/bf01911411
6 sg:pub.10.1007/s00339-015-9182-4
7 sg:pub.10.1007/s10973-011-1549-y
8 sg:pub.10.1007/s11433-010-0131-0
9 sg:pub.10.1007/s11837-012-0366-5
10 sg:pub.10.1007/s11837-014-1002-3
11 sg:pub.10.1007/s12034-014-0621-1
12 schema:datePublished 2015-08-25
13 schema:datePublishedReg 2015-08-25
14 schema:description Abstract The nonisothermal crystallization kinetics, fragility, and thermodynamics of Ti 20 Zr 20 Cu 20 Ni 20 Be 20 high entropy bulk metallic glass (HE-BMG) have been investigated by differential scanning calorimetry. The activation energies for the glass transition and crystallization events were determined by Kissinger and Ozawa methods. The value of local Avrami exponent is less than 1.5 in most cases for all the three crystallization events, indicating that the major crystallization mechanism is diffusion-controlled growth of pre-existing nuclei. The local activation energy is stable during the whole crystallization process and this further confirms that the crystallization occurs through a single mechanism. Ti 20 Zr 20 Cu 20 Ni 20 Be 20 alloy can be classified into “strong glass formers” according to the estimated fragility index and also shows a relatively low value of Gibbs free energy difference. However, compared with Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 BMG, the glass-forming ability of Ti 20 Zr 20 Cu 20 Ni 20 Be 20 HE-BMG is much lower and the related reasons have been discussed.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N0a2d20e292634190b79a433e846e7cad
18 N49da6d10a4f2494b81ebbe7af123b812
19 sg:journal.1357547
20 schema:keywords Abstract
21 Avrami exponent
22 BMG
23 Gibbs free energy difference
24 HE-BMG
25 Kissinger
26 Ni-20
27 Ozawa method
28 ability
29 activation energy
30 alloy
31 bulk metallic glass
32 calorimetry
33 cases
34 crystallization
35 crystallization events
36 crystallization kinetics
37 crystallization mechanism
38 crystallization process
39 differences
40 differential scanning calorimetry
41 diffusion-controlled growth
42 energy
43 energy difference
44 events
45 exponent
46 formers
47 fragility
48 fragility index
49 free energy difference
50 glass
51 glass formers
52 glass transition
53 glass-forming ability
54 growth
55 high entropy bulk metallic glass
56 index
57 kinetics
58 local Avrami exponent
59 local activation energy
60 lower values
61 mechanism
62 metallic glasses
63 method
64 most cases
65 nonisothermal crystallization kinetics
66 nucleus
67 pre-existing nuclei
68 process
69 reasons
70 related reasons
71 scanning calorimetry
72 single mechanism
73 strong glass formers
74 thermodynamics
75 transition
76 values
77 whole crystallization process
78 schema:name Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass
79 schema:pagination 2772-2782
80 schema:productId N4ab2b714ed5c4bd8872d52146d6eb9ad
81 N7713469c7324495395870a20e9c9f129
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013347567
83 https://doi.org/10.1557/jmr.2015.253
84 schema:sdDatePublished 2022-11-24T20:59
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N4de0a3cda5b241d2a86389867a1ca555
87 schema:url https://doi.org/10.1557/jmr.2015.253
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0a2d20e292634190b79a433e846e7cad schema:volumeNumber 30
92 rdf:type schema:PublicationVolume
93 N0d0c59f81b3f4b30a7a5db44272bb385 rdf:first sg:person.07563624647.49
94 rdf:rest Nac3762e909df44d3b59a3e1fe18f6de0
95 N1fafcccc46fd472880e8889f42ac3a10 rdf:first sg:person.014737746615.12
96 rdf:rest N0d0c59f81b3f4b30a7a5db44272bb385
97 N49da6d10a4f2494b81ebbe7af123b812 schema:issueNumber 18
98 rdf:type schema:PublicationIssue
99 N4ab2b714ed5c4bd8872d52146d6eb9ad schema:name doi
100 schema:value 10.1557/jmr.2015.253
101 rdf:type schema:PropertyValue
102 N4de0a3cda5b241d2a86389867a1ca555 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N7713469c7324495395870a20e9c9f129 schema:name dimensions_id
105 schema:value pub.1013347567
106 rdf:type schema:PropertyValue
107 Nac3762e909df44d3b59a3e1fe18f6de0 rdf:first sg:person.010571403552.32
108 rdf:rest Neceb75d71d3c4a0684687deb5a448697
109 Ne5ef2f3141754a66bb3d742def0ff703 rdf:first sg:person.014726145053.03
110 rdf:rest N1fafcccc46fd472880e8889f42ac3a10
111 Neceb75d71d3c4a0684687deb5a448697 rdf:first sg:person.016215435721.91
112 rdf:rest rdf:nil
113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
114 schema:name Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
117 schema:name Materials Engineering
118 rdf:type schema:DefinedTerm
119 sg:grant.7001440 http://pending.schema.org/fundedItem sg:pub.10.1557/jmr.2015.253
120 rdf:type schema:MonetaryGrant
121 sg:grant.7176047 http://pending.schema.org/fundedItem sg:pub.10.1557/jmr.2015.253
122 rdf:type schema:MonetaryGrant
123 sg:journal.1357547 schema:issn 0884-2914
124 2044-5326
125 schema:name Journal of Materials Research
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.010571403552.32 schema:affiliation grid-institutes:grid.12527.33
129 schema:familyName Yao
130 schema:givenName Kefu
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010571403552.32
132 rdf:type schema:Person
133 sg:person.014726145053.03 schema:affiliation grid-institutes:grid.12527.33
134 schema:familyName Gong
135 schema:givenName Pan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726145053.03
137 rdf:type schema:Person
138 sg:person.014737746615.12 schema:affiliation grid-institutes:grid.12527.33
139 schema:familyName Zhao
140 schema:givenName Shaofan
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737746615.12
142 rdf:type schema:Person
143 sg:person.016215435721.91 schema:affiliation grid-institutes:grid.412030.4
144 schema:familyName Wang
145 schema:givenName Xin
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016215435721.91
147 rdf:type schema:Person
148 sg:person.07563624647.49 schema:affiliation grid-institutes:grid.12527.33
149 schema:familyName Ding
150 schema:givenName Hongyu
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07563624647.49
152 rdf:type schema:Person
153 sg:pub.10.1007/bf01113575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004126009
154 https://doi.org/10.1007/bf01113575
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf01911411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020362867
157 https://doi.org/10.1007/bf01911411
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00339-015-9182-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021869258
160 https://doi.org/10.1007/s00339-015-9182-4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10973-011-1549-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030455411
163 https://doi.org/10.1007/s10973-011-1549-y
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11433-010-0131-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021995046
166 https://doi.org/10.1007/s11433-010-0131-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11837-012-0366-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050266430
169 https://doi.org/10.1007/s11837-012-0366-5
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11837-014-1002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036605094
172 https://doi.org/10.1007/s11837-014-1002-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s12034-014-0621-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039314516
175 https://doi.org/10.1007/s12034-014-0621-1
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.12527.33 schema:alternateName School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
178 schema:name School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
179 rdf:type schema:Organization
180 grid-institutes:grid.412030.4 schema:alternateName School of Materials Science and Engineering, Hebei University of Technology, Hongqiao District, Tianjin 300130, China
181 schema:name School of Materials Science and Engineering, Hebei University of Technology, Hongqiao District, Tianjin 300130, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...