Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-02-11

AUTHORS

Jiwei Lu, S. Joseph Poon, Stuart A. Wolf, Bradley D. Weaver, Patrick J. McMarr, Harold Hughes, Eugene Chen

ABSTRACT

Spintronics utilizes spin or magnetism to provide new ways to store and process information and is primarily associated with the utilization of spin polarized currents in memory and logic devices. With the end of silicon transistor technology in sight, spintronics can provide new paradigms for information processing and storage. Compared to charge based electronics, the advantages of magnetism/spin based devices are nonvolatility and ultra low power. In particular, magnetoresistive random access memories (MRAMs) are known to be “Rad Hard” [HXNV0100 64K x 16 Non-Volatile Magnetic RAM ( www.honeywell.com/aerospace ), S. Gerardin and A. Paccagnella, IEEE Trans. Nucl. Sci. 57 (6), 3016–3039 (2010), R.R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo, and D. Martin, Proceedings of IEEE Radiation Effects Data Workshop , 103–105 (2009)] and are considered to be critical components for space and military systems due to their very low power consumption and nonvolatility. However, advances in the magnetic nanostructures and new materials for the scalability of MRAM and other potential applications require a re-evaluation of their radiation hardness. This review focuses mainly on recent progress in understanding the effects of irradiation on the magnetic materials and magnetic structures that are related to MRAM technology. Up to date, the most pronounced effects on the microstructures and the properties are linked to the displacement damage associated with heavy ion irradiation; however, the thermal effect is also important as it acts as an annealing process to recover the damage partially. Critical metrics for the magnetic tunnel junctions for postmortem characterizations will also be discussed. Finally, with the introduction of new perpendicular magnetic layers and the very thin MgO barrier layer in the next generation MRAM, the effects of the ionization damage shall be studied in the future. More... »

PAGES

1430-1439

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.2014.413

DOI

http://dx.doi.org/10.1557/jmr.2014.413

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043747360


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jiwei", 
        "id": "sg:person.01050032565.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050032565.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. Joseph", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA, ; and, Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA, ; and, Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolf", 
        "givenName": "Stuart A.", 
        "id": "sg:person.07747523442.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747523442.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Naval Research Laboratory, Washington, District of Columbia 20375, USA", 
          "id": "http://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, Washington, District of Columbia 20375, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weaver", 
        "givenName": "Bradley D.", 
        "id": "sg:person.010064322523.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010064322523.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Naval Research Laboratory, Washington, District of Columbia 20375, USA", 
          "id": "http://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, Washington, District of Columbia 20375, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McMarr", 
        "givenName": "Patrick J.", 
        "id": "sg:person.013270274621.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270274621.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Naval Research Laboratory, Washington, District of Columbia 20375, USA", 
          "id": "http://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, Washington, District of Columbia 20375, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hughes", 
        "givenName": "Harold", 
        "id": "sg:person.015344730323.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344730323.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samsung Semiconductor Inc., San Jose, California 95134, USA", 
          "id": "http://www.grid.ac/institutes/grid.420463.7", 
          "name": [
            "Samsung Semiconductor Inc., San Jose, California 95134, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Eugene", 
        "id": "sg:person.014447442721.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014447442721.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-002-0363-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042382708", 
          "https://doi.org/10.1007/s11661-002-0363-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-010-5972-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021344179", 
          "https://doi.org/10.1007/s00339-010-5972-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053403072", 
          "https://doi.org/10.1038/nmat1256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047761572", 
          "https://doi.org/10.1038/nmat1257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041552466", 
          "https://doi.org/10.1038/nmat1842"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-11", 
    "datePublishedReg": "2015-02-11", 
    "description": "Abstract     \n Spintronics utilizes spin or magnetism to provide new ways to store and process information and is primarily associated with the utilization of spin polarized currents in memory and logic devices. With the end of silicon transistor technology in sight, spintronics can provide new paradigms for information processing and storage. Compared to charge based electronics, the advantages of magnetism/spin based devices are nonvolatility and ultra low power. In particular, magnetoresistive random access memories (MRAMs) are known to be \u201cRad Hard\u201d [HXNV0100 64K x 16 Non-Volatile Magnetic RAM ( www.honeywell.com/aerospace ), S. Gerardin and A. Paccagnella, IEEE Trans. Nucl. Sci. 57 (6), 3016\u20133039 (2010), R.R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo, and D. Martin, Proceedings of IEEE Radiation Effects Data Workshop , 103\u2013105 (2009)] and are considered to be critical components for space and military systems due to their very low power consumption and nonvolatility. However, advances in the magnetic nanostructures and new materials for the scalability of MRAM and other potential applications require a re-evaluation of their radiation hardness. This review focuses mainly on recent progress in understanding the effects of irradiation on the magnetic materials and magnetic structures that are related to MRAM technology. Up to date, the most pronounced effects on the microstructures and the properties are linked to the displacement damage associated with heavy ion irradiation; however, the thermal effect is also important as it acts as an annealing process to recover the damage partially. Critical metrics for the magnetic tunnel junctions for postmortem characterizations will also be discussed. Finally, with the introduction of new perpendicular magnetic layers and the very thin MgO barrier layer in the next generation MRAM, the effects of the ionization damage shall be studied in the future. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.2014.413", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3489666", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4422556", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "magnetoresistive random access memory", 
      "magnetic materials", 
      "heavy ion irradiation", 
      "perpendicular magnetic layer", 
      "spin-dependent transport", 
      "silicon transistor technology", 
      "radiation hardness", 
      "magnetic nanostructures", 
      "ion irradiation", 
      "spintronic applications", 
      "magnetic structure", 
      "ionization damage", 
      "displacement damage", 
      "magnetic tunnel junctions", 
      "magnetic layer", 
      "spin", 
      "Rad-Hard", 
      "logic devices", 
      "tunnel junctions", 
      "radiation effects", 
      "spintronics", 
      "barrier layer", 
      "MgO barrier layer", 
      "annealing process", 
      "magnetism", 
      "random access memory", 
      "effect of irradiation", 
      "MRAM technology", 
      "nanostructures", 
      "transistor technology", 
      "thermal effects", 
      "information processing", 
      "low power consumption", 
      "potential applications", 
      "recent progress", 
      "dependent transport", 
      "ultra-low power", 
      "access memory", 
      "irradiation", 
      "nonvolatility", 
      "devices", 
      "postmortem characterization", 
      "critical metrics", 
      "new materials", 
      "low power", 
      "layer", 
      "electronics", 
      "space", 
      "current", 
      "materials", 
      "applications", 
      "sight", 
      "power consumption", 
      "military systems", 
      "properties", 
      "metrics", 
      "transport", 
      "structure", 
      "new way", 
      "power", 
      "junction", 
      "effect", 
      "scalability", 
      "system", 
      "characterization", 
      "microstructure", 
      "new paradigm", 
      "advantages", 
      "pronounced effect", 
      "technology", 
      "progress", 
      "hardness", 
      "components", 
      "way", 
      "Abstract", 
      "processing", 
      "process", 
      "information", 
      "introduction", 
      "critical component", 
      "memory", 
      "advances", 
      "damage", 
      "storage", 
      "end", 
      "paradigm", 
      "consumption", 
      "utilization", 
      "future", 
      "Hard", 
      "date", 
      "review"
    ], 
    "name": "Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications", 
    "pagination": "1430-1439", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043747360"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.2014.413"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.2014.413", 
      "https://app.dimensions.ai/details/publication/pub.1043747360"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_681.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.2014.413"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2014.413'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2014.413'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2014.413'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2014.413'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      124 URIs      108 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.2014.413 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Ne21e4ea8486c4b64a5489a4d424af269
6 schema:citation sg:pub.10.1007/s00339-010-5972-x
7 sg:pub.10.1007/s11661-002-0363-3
8 sg:pub.10.1038/nmat1256
9 sg:pub.10.1038/nmat1257
10 sg:pub.10.1038/nmat1842
11 sg:pub.10.1038/nmat2024
12 schema:datePublished 2015-02-11
13 schema:datePublishedReg 2015-02-11
14 schema:description Abstract Spintronics utilizes spin or magnetism to provide new ways to store and process information and is primarily associated with the utilization of spin polarized currents in memory and logic devices. With the end of silicon transistor technology in sight, spintronics can provide new paradigms for information processing and storage. Compared to charge based electronics, the advantages of magnetism/spin based devices are nonvolatility and ultra low power. In particular, magnetoresistive random access memories (MRAMs) are known to be “Rad Hard” [HXNV0100 64K x 16 Non-Volatile Magnetic RAM ( www.honeywell.com/aerospace ), S. Gerardin and A. Paccagnella, IEEE Trans. Nucl. Sci. 57 (6), 3016–3039 (2010), R.R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo, and D. Martin, Proceedings of IEEE Radiation Effects Data Workshop , 103–105 (2009)] and are considered to be critical components for space and military systems due to their very low power consumption and nonvolatility. However, advances in the magnetic nanostructures and new materials for the scalability of MRAM and other potential applications require a re-evaluation of their radiation hardness. This review focuses mainly on recent progress in understanding the effects of irradiation on the magnetic materials and magnetic structures that are related to MRAM technology. Up to date, the most pronounced effects on the microstructures and the properties are linked to the displacement damage associated with heavy ion irradiation; however, the thermal effect is also important as it acts as an annealing process to recover the damage partially. Critical metrics for the magnetic tunnel junctions for postmortem characterizations will also be discussed. Finally, with the introduction of new perpendicular magnetic layers and the very thin MgO barrier layer in the next generation MRAM, the effects of the ionization damage shall be studied in the future.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N73db83ff5fc24917af1754d12cfae8d6
18 Nc0852eba85a34a588941a1bcadae168a
19 sg:journal.1357547
20 schema:keywords Abstract
21 Hard
22 MRAM technology
23 MgO barrier layer
24 Rad-Hard
25 access memory
26 advances
27 advantages
28 annealing process
29 applications
30 barrier layer
31 characterization
32 components
33 consumption
34 critical component
35 critical metrics
36 current
37 damage
38 date
39 dependent transport
40 devices
41 displacement damage
42 effect
43 effect of irradiation
44 electronics
45 end
46 future
47 hardness
48 heavy ion irradiation
49 information
50 information processing
51 introduction
52 ion irradiation
53 ionization damage
54 irradiation
55 junction
56 layer
57 logic devices
58 low power
59 low power consumption
60 magnetic layer
61 magnetic materials
62 magnetic nanostructures
63 magnetic structure
64 magnetic tunnel junctions
65 magnetism
66 magnetoresistive random access memory
67 materials
68 memory
69 metrics
70 microstructure
71 military systems
72 nanostructures
73 new materials
74 new paradigm
75 new way
76 nonvolatility
77 paradigm
78 perpendicular magnetic layer
79 postmortem characterization
80 potential applications
81 power
82 power consumption
83 process
84 processing
85 progress
86 pronounced effect
87 properties
88 radiation effects
89 radiation hardness
90 random access memory
91 recent progress
92 review
93 scalability
94 sight
95 silicon transistor technology
96 space
97 spin
98 spin-dependent transport
99 spintronic applications
100 spintronics
101 storage
102 structure
103 system
104 technology
105 thermal effects
106 transistor technology
107 transport
108 tunnel junctions
109 ultra-low power
110 utilization
111 way
112 schema:name Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications
113 schema:pagination 1430-1439
114 schema:productId N8be559fabaed4f4bbf05c9ab558de74b
115 Nd439b2e9a98a443096702d500094eea9
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043747360
117 https://doi.org/10.1557/jmr.2014.413
118 schema:sdDatePublished 2022-10-01T06:41
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N284e8abcff65499f9261b9bbcff91d2f
121 schema:url https://doi.org/10.1557/jmr.2014.413
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N20f86273b3bf49ad95619603e27f3ebd rdf:first sg:person.013270274621.26
126 rdf:rest Nfd47ec50a33d491e8c901735b3ae5fb1
127 N284e8abcff65499f9261b9bbcff91d2f schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N55e161688e75429c9c4004eb04dac124 rdf:first sg:person.014447442721.02
130 rdf:rest rdf:nil
131 N5b235c7b81044bbab4c88a98ae60e4c1 rdf:first sg:person.07747523442.25
132 rdf:rest N93edc05193294bc1803f39ff7a6f1bed
133 N73db83ff5fc24917af1754d12cfae8d6 schema:issueNumber 9
134 rdf:type schema:PublicationIssue
135 N8be559fabaed4f4bbf05c9ab558de74b schema:name dimensions_id
136 schema:value pub.1043747360
137 rdf:type schema:PropertyValue
138 N93edc05193294bc1803f39ff7a6f1bed rdf:first sg:person.010064322523.54
139 rdf:rest N20f86273b3bf49ad95619603e27f3ebd
140 Nb1d7a61fa27841a6abbdf28257d6b937 rdf:first sg:person.010252015157.28
141 rdf:rest N5b235c7b81044bbab4c88a98ae60e4c1
142 Nc0852eba85a34a588941a1bcadae168a schema:volumeNumber 30
143 rdf:type schema:PublicationVolume
144 Nd439b2e9a98a443096702d500094eea9 schema:name doi
145 schema:value 10.1557/jmr.2014.413
146 rdf:type schema:PropertyValue
147 Ne21e4ea8486c4b64a5489a4d424af269 rdf:first sg:person.01050032565.05
148 rdf:rest Nb1d7a61fa27841a6abbdf28257d6b937
149 Nfd47ec50a33d491e8c901735b3ae5fb1 rdf:first sg:person.015344730323.54
150 rdf:rest N55e161688e75429c9c4004eb04dac124
151 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
152 schema:name Physical Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
155 schema:name Condensed Matter Physics
156 rdf:type schema:DefinedTerm
157 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
158 schema:name Engineering
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
161 schema:name Materials Engineering
162 rdf:type schema:DefinedTerm
163 sg:grant.3489666 http://pending.schema.org/fundedItem sg:pub.10.1557/jmr.2014.413
164 rdf:type schema:MonetaryGrant
165 sg:grant.4422556 http://pending.schema.org/fundedItem sg:pub.10.1557/jmr.2014.413
166 rdf:type schema:MonetaryGrant
167 sg:journal.1357547 schema:issn 0884-2914
168 2044-5326
169 schema:name Journal of Materials Research
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.010064322523.54 schema:affiliation grid-institutes:grid.89170.37
173 schema:familyName Weaver
174 schema:givenName Bradley D.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010064322523.54
176 rdf:type schema:Person
177 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
178 schema:familyName Poon
179 schema:givenName S. Joseph
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
181 rdf:type schema:Person
182 sg:person.01050032565.05 schema:affiliation grid-institutes:grid.27755.32
183 schema:familyName Lu
184 schema:givenName Jiwei
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050032565.05
186 rdf:type schema:Person
187 sg:person.013270274621.26 schema:affiliation grid-institutes:grid.89170.37
188 schema:familyName McMarr
189 schema:givenName Patrick J.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270274621.26
191 rdf:type schema:Person
192 sg:person.014447442721.02 schema:affiliation grid-institutes:grid.420463.7
193 schema:familyName Chen
194 schema:givenName Eugene
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014447442721.02
196 rdf:type schema:Person
197 sg:person.015344730323.54 schema:affiliation grid-institutes:grid.89170.37
198 schema:familyName Hughes
199 schema:givenName Harold
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344730323.54
201 rdf:type schema:Person
202 sg:person.07747523442.25 schema:affiliation grid-institutes:grid.27755.32
203 schema:familyName Wolf
204 schema:givenName Stuart A.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747523442.25
206 rdf:type schema:Person
207 sg:pub.10.1007/s00339-010-5972-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021344179
208 https://doi.org/10.1007/s00339-010-5972-x
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s11661-002-0363-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042382708
211 https://doi.org/10.1007/s11661-002-0363-3
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nmat1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053403072
214 https://doi.org/10.1038/nmat1256
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nmat1257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047761572
217 https://doi.org/10.1038/nmat1257
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nmat1842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041552466
220 https://doi.org/10.1038/nmat1842
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
223 https://doi.org/10.1038/nmat2024
224 rdf:type schema:CreativeWork
225 grid-institutes:grid.27755.32 schema:alternateName Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
226 Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA, ; and, Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
227 Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
228 schema:name Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
229 Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA, ; and, Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
230 Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
231 rdf:type schema:Organization
232 grid-institutes:grid.420463.7 schema:alternateName Samsung Semiconductor Inc., San Jose, California 95134, USA
233 schema:name Samsung Semiconductor Inc., San Jose, California 95134, USA
234 rdf:type schema:Organization
235 grid-institutes:grid.89170.37 schema:alternateName Naval Research Laboratory, Washington, District of Columbia 20375, USA
236 schema:name Naval Research Laboratory, Washington, District of Columbia 20375, USA
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...