Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-03

AUTHORS

Ahmad I. Ayesh, Naser Qamhieh, Saleh T. Mahmoud, Hussain Alawadhi

ABSTRACT

Copper–tin (Cu x Sn 1− x ) nanocluster is a promising system for gas sensing applications, mainly because of its sensitivity and selectivity for H 2 S. In this work, pure Sn and Cu as well as composite Cu x Sn 1− x nanoclusters were synthesized using the dc magnetron sputtering gas condensation technique. Nanoclusters with different Sn to Cu ratios were produced by changing the ratio of Sn and Cu in the target. The dependence of Sn, Cu, and Cu x Sn 1− x nanoclusters’ size distribution on various source parameters, such as the inert gas flow rate and aggregation length, has been investigated in detail. The results show that as the inert gas flow rate increases, the mean nanocluster size increases for Sn, decreases for Cu, while increases and then decreases for Cu x Sn 1− x . The results could be understood in terms of the contribution percentage of the nanocluster formation mechanism. Furthermore, this work demonstrates the ability of tuning the Cu x Sn 1− x nanoclusters’ size and composition by a proper optimization of the source operation conditions. More... »

PAGES

2441-2446

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.2012.205

DOI

http://dx.doi.org/10.1557/jmr.2012.205

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049608010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates", 
          "id": "http://www.grid.ac/institutes/grid.43519.3a", 
          "name": [
            "Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayesh", 
        "givenName": "Ahmad I.", 
        "id": "sg:person.015510766551.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510766551.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates", 
          "id": "http://www.grid.ac/institutes/grid.43519.3a", 
          "name": [
            "Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qamhieh", 
        "givenName": "Naser", 
        "id": "sg:person.07555164003.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555164003.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates", 
          "id": "http://www.grid.ac/institutes/grid.43519.3a", 
          "name": [
            "Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahmoud", 
        "givenName": "Saleh T.", 
        "id": "sg:person.015610141353.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610141353.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, University of Sharjah, United Arab Emirates", 
          "id": "http://www.grid.ac/institutes/grid.412789.1", 
          "name": [
            "Department of Applied Physics, University of Sharjah, United Arab Emirates"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alawadhi", 
        "givenName": "Hussain", 
        "id": "sg:person.015310001601.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310001601.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-004-2967-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006535928", 
          "https://doi.org/10.1007/s00339-004-2967-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-010-0104-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019611774", 
          "https://doi.org/10.1007/s11051-010-0104-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-007-4271-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029349910", 
          "https://doi.org/10.1007/s00339-007-4271-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2010.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041479955", 
          "https://doi.org/10.1557/jmr.2010.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1994.1250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032949352", 
          "https://doi.org/10.1557/jmr.1994.1250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03010453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678239", 
          "https://doi.org/10.1007/bf03010453"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07-03", 
    "datePublishedReg": "2012-07-03", 
    "description": "Abstract     \n Copper\u2013tin (Cu  x  Sn  1\u2212 x  ) nanocluster is a promising system for gas sensing applications, mainly because of its sensitivity and selectivity for H 2 S. In this work, pure Sn and Cu as well as composite Cu  x  Sn  1\u2212 x  nanoclusters were synthesized using the dc magnetron sputtering gas condensation technique. Nanoclusters with different Sn to Cu ratios were produced by changing the ratio of Sn and Cu in the target. The dependence of Sn, Cu, and Cu  x  Sn  1\u2212 x  nanoclusters\u2019 size distribution on various source parameters, such as the inert gas flow rate and aggregation length, has been investigated in detail. The results show that as the inert gas flow rate increases, the mean nanocluster size increases for Sn, decreases for Cu, while increases and then decreases for Cu  x  Sn  1\u2212 x  . The results could be understood in terms of the contribution percentage of the nanocluster formation mechanism. Furthermore, this work demonstrates the ability of tuning the Cu  x  Sn  1\u2212 x  nanoclusters\u2019 size and composition by a proper optimization of the source operation conditions. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.2012.205", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "18", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "inert gas flow rate", 
      "gas flow rate increases", 
      "gas sensing applications", 
      "gas flow rate", 
      "flow rate increases", 
      "gas condensation technique", 
      "ratio of Sn", 
      "operation conditions", 
      "sensing applications", 
      "flow rate", 
      "pure Sn", 
      "composite Cu", 
      "size distribution", 
      "aggregation length", 
      "contribution percentage", 
      "proper optimization", 
      "promising system", 
      "condensation technique", 
      "rate increases", 
      "formation mechanism", 
      "Sn", 
      "different Sn", 
      "magnetron", 
      "Cu", 
      "source parameters", 
      "size increases", 
      "fabrication", 
      "nanoclusters", 
      "Cu ratio", 
      "applications", 
      "work", 
      "ratio", 
      "optimization", 
      "technique", 
      "dependence", 
      "parameters", 
      "results", 
      "increase", 
      "conditions", 
      "system", 
      "selectivity", 
      "distribution", 
      "detail", 
      "size", 
      "composition", 
      "sensitivity", 
      "rate", 
      "length", 
      "terms", 
      "Abstract", 
      "mechanism", 
      "ability", 
      "percentage", 
      "bimetallic nanoclusters", 
      "target", 
      "nanocluster size increases", 
      "Copper\u2013tin (Cu  x  Sn  1\u2212 x  ) nanocluster", 
      "dc magnetron sputtering gas condensation technique", 
      "magnetron sputtering gas condensation technique", 
      "sputtering gas condensation technique", 
      "dependence of Sn", 
      "inert gas flow rate increases", 
      "mean nanocluster size increases", 
      "nanocluster formation mechanism", 
      "source operation conditions", 
      "size-selected bimetallic nanoclusters"
    ], 
    "name": "Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering", 
    "pagination": "2441-2446", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049608010"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.2012.205"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.2012.205", 
      "https://app.dimensions.ai/details/publication/pub.1049608010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_556.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.2012.205"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2012.205'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2012.205'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2012.205'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2012.205'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      100 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.2012.205 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:09
4 anzsrc-for:0912
5 anzsrc-for:0913
6 schema:author N44f8a3f746d04eed98025d6d643e5246
7 schema:citation sg:pub.10.1007/bf03010453
8 sg:pub.10.1007/s00339-004-2967-5
9 sg:pub.10.1007/s00339-007-4271-7
10 sg:pub.10.1007/s11051-010-0104-2
11 sg:pub.10.1557/jmr.1994.1250
12 sg:pub.10.1557/jmr.2010.30
13 schema:datePublished 2012-07-03
14 schema:datePublishedReg 2012-07-03
15 schema:description Abstract Copper–tin (Cu x Sn 1− x ) nanocluster is a promising system for gas sensing applications, mainly because of its sensitivity and selectivity for H 2 S. In this work, pure Sn and Cu as well as composite Cu x Sn 1− x nanoclusters were synthesized using the dc magnetron sputtering gas condensation technique. Nanoclusters with different Sn to Cu ratios were produced by changing the ratio of Sn and Cu in the target. The dependence of Sn, Cu, and Cu x Sn 1− x nanoclusters’ size distribution on various source parameters, such as the inert gas flow rate and aggregation length, has been investigated in detail. The results show that as the inert gas flow rate increases, the mean nanocluster size increases for Sn, decreases for Cu, while increases and then decreases for Cu x Sn 1− x . The results could be understood in terms of the contribution percentage of the nanocluster formation mechanism. Furthermore, this work demonstrates the ability of tuning the Cu x Sn 1− x nanoclusters’ size and composition by a proper optimization of the source operation conditions.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N2502007f00144e91aa64bbcfda9ad819
20 Nbd8e65aabb144696a640ecf54d0e2531
21 sg:journal.1357547
22 schema:keywords Abstract
23 Copper–tin (Cu x Sn 1− x ) nanocluster
24 Cu
25 Cu ratio
26 Sn
27 ability
28 aggregation length
29 applications
30 bimetallic nanoclusters
31 composite Cu
32 composition
33 condensation technique
34 conditions
35 contribution percentage
36 dc magnetron sputtering gas condensation technique
37 dependence
38 dependence of Sn
39 detail
40 different Sn
41 distribution
42 fabrication
43 flow rate
44 flow rate increases
45 formation mechanism
46 gas condensation technique
47 gas flow rate
48 gas flow rate increases
49 gas sensing applications
50 increase
51 inert gas flow rate
52 inert gas flow rate increases
53 length
54 magnetron
55 magnetron sputtering gas condensation technique
56 mean nanocluster size increases
57 mechanism
58 nanocluster formation mechanism
59 nanocluster size increases
60 nanoclusters
61 operation conditions
62 optimization
63 parameters
64 percentage
65 promising system
66 proper optimization
67 pure Sn
68 rate
69 rate increases
70 ratio
71 ratio of Sn
72 results
73 selectivity
74 sensing applications
75 sensitivity
76 size
77 size distribution
78 size increases
79 size-selected bimetallic nanoclusters
80 source operation conditions
81 source parameters
82 sputtering gas condensation technique
83 system
84 target
85 technique
86 terms
87 work
88 schema:name Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering
89 schema:pagination 2441-2446
90 schema:productId N12fcd45f947b4d7d86c8115f1d3ad476
91 Nf1f79d68d6f14348927726427c5af2fe
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049608010
93 https://doi.org/10.1557/jmr.2012.205
94 schema:sdDatePublished 2022-01-01T18:26
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N3b8569a271fa474dafbf88fe3887aff6
97 schema:url https://doi.org/10.1557/jmr.2012.205
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N12fcd45f947b4d7d86c8115f1d3ad476 schema:name doi
102 schema:value 10.1557/jmr.2012.205
103 rdf:type schema:PropertyValue
104 N2502007f00144e91aa64bbcfda9ad819 schema:issueNumber 18
105 rdf:type schema:PublicationIssue
106 N3b8569a271fa474dafbf88fe3887aff6 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N44f8a3f746d04eed98025d6d643e5246 rdf:first sg:person.015510766551.17
109 rdf:rest N8a581856819145ab889768cdf1e0878a
110 N8a581856819145ab889768cdf1e0878a rdf:first sg:person.07555164003.45
111 rdf:rest Nb2bfc3fbfa0f464099367d7323d897bd
112 Nb2bfc3fbfa0f464099367d7323d897bd rdf:first sg:person.015610141353.60
113 rdf:rest Nbc41b80dff4f47b888917471f66aeec2
114 Nbc41b80dff4f47b888917471f66aeec2 rdf:first sg:person.015310001601.85
115 rdf:rest rdf:nil
116 Nbd8e65aabb144696a640ecf54d0e2531 schema:volumeNumber 27
117 rdf:type schema:PublicationVolume
118 Nf1f79d68d6f14348927726427c5af2fe schema:name dimensions_id
119 schema:value pub.1049608010
120 rdf:type schema:PropertyValue
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
125 schema:name Condensed Matter Physics
126 rdf:type schema:DefinedTerm
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
131 schema:name Materials Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
134 schema:name Mechanical Engineering
135 rdf:type schema:DefinedTerm
136 sg:journal.1357547 schema:issn 0884-2914
137 2044-5326
138 schema:name Journal of Materials Research
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.015310001601.85 schema:affiliation grid-institutes:grid.412789.1
142 schema:familyName Alawadhi
143 schema:givenName Hussain
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310001601.85
145 rdf:type schema:Person
146 sg:person.015510766551.17 schema:affiliation grid-institutes:grid.43519.3a
147 schema:familyName Ayesh
148 schema:givenName Ahmad I.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510766551.17
150 rdf:type schema:Person
151 sg:person.015610141353.60 schema:affiliation grid-institutes:grid.43519.3a
152 schema:familyName Mahmoud
153 schema:givenName Saleh T.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610141353.60
155 rdf:type schema:Person
156 sg:person.07555164003.45 schema:affiliation grid-institutes:grid.43519.3a
157 schema:familyName Qamhieh
158 schema:givenName Naser
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07555164003.45
160 rdf:type schema:Person
161 sg:pub.10.1007/bf03010453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678239
162 https://doi.org/10.1007/bf03010453
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00339-004-2967-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006535928
165 https://doi.org/10.1007/s00339-004-2967-5
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00339-007-4271-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029349910
168 https://doi.org/10.1007/s00339-007-4271-7
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11051-010-0104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019611774
171 https://doi.org/10.1007/s11051-010-0104-2
172 rdf:type schema:CreativeWork
173 sg:pub.10.1557/jmr.1994.1250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032949352
174 https://doi.org/10.1557/jmr.1994.1250
175 rdf:type schema:CreativeWork
176 sg:pub.10.1557/jmr.2010.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041479955
177 https://doi.org/10.1557/jmr.2010.30
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.412789.1 schema:alternateName Department of Applied Physics, University of Sharjah, United Arab Emirates
180 schema:name Department of Applied Physics, University of Sharjah, United Arab Emirates
181 rdf:type schema:Organization
182 grid-institutes:grid.43519.3a schema:alternateName Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates
183 schema:name Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...