Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-27

AUTHORS

Khaled Youssef, Xuegong Yu, Mike Seacrist, George Rozgonyi

ABSTRACT

Nanoindentation was used to examine the impact of impurities and grain boundaries on the mechanical properties of a “model” (110)/(100) grain boundary (GB) interface prepared using direct silicon bonding via the hybrid orientation technique of (110) and (100) p-type silicon wafers. Remarkable differences were found between the mechanical behavior of Fe- and Cu-contaminated samples. The direct silicon bonded wafers contaminated with either Fe or Cu showed opposite effects on mechanical properties, with Fe enhancing the silicon hardness, while Cu contamination induces a gradual weakening. High-resolution transmission electron microscopy was used to verify that the abrupt hardness changes observed during increasing nanoindentation loading is attributed to local deformation induced by the GB interface, Cu precipitate colony induced dislocations, and the abrupt crystallographic orientation change across the GB. The resulting dislocation loop generation facilitated the deformation process during nanoindentation and therefore softened the material. More... »

PAGES

349-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.2011.265

DOI

http://dx.doi.org/10.1557/jmr.2011.265

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011287228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606", 
          "id": "http://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Youssef", 
        "givenName": "Khaled", 
        "id": "sg:person.07651453533.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651453533.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science Engineering and State Key Lab of Silicon Materials, Zhejiang University, 310027 Hangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Materials Science Engineering and State Key Lab of Silicon Materials, Zhejiang University, 310027 Hangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Xuegong", 
        "id": "sg:person.011467206235.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011467206235.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MEMC Electronic Materials, Inc, ., St. Peters, Missouri 63376", 
          "id": "http://www.grid.ac/institutes/grid.474699.1", 
          "name": [
            "MEMC Electronic Materials, Inc, ., St. Peters, Missouri 63376"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seacrist", 
        "givenName": "Mike", 
        "id": "sg:person.012265061143.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012265061143.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606", 
          "id": "http://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozgonyi", 
        "givenName": "George", 
        "id": "sg:person.014024565415.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014024565415.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2004.19.1.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041295830", 
          "https://doi.org/10.1557/jmr.2004.19.1.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00823224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011710428", 
          "https://doi.org/10.1007/bf00823224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1998.0147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053563900", 
          "https://doi.org/10.1557/jmr.1998.0147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00541038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025345389", 
          "https://doi.org/10.1007/bf00541038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1986.0601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033087180", 
          "https://doi.org/10.1557/jmr.1986.0601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00617708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700042", 
          "https://doi.org/10.1007/bf00617708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1992.1564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043643805", 
          "https://doi.org/10.1557/jmr.1992.1564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02402849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023707331", 
          "https://doi.org/10.1007/bf02402849"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09-27", 
    "datePublishedReg": "2011-09-27", 
    "description": "Abstract     \nNanoindentation was used to examine the impact of impurities and grain boundaries on the mechanical properties of a \u201cmodel\u201d (110)/(100) grain boundary (GB) interface prepared using direct silicon bonding via the hybrid orientation technique of (110) and (100) p-type silicon wafers. Remarkable differences were found between the mechanical behavior of Fe- and Cu-contaminated samples. The direct silicon bonded wafers contaminated with either Fe or Cu showed opposite effects on mechanical properties, with Fe enhancing the silicon hardness, while Cu contamination induces a gradual weakening. High-resolution transmission electron microscopy was used to verify that the abrupt hardness changes observed during increasing nanoindentation loading is attributed to local deformation induced by the GB interface, Cu precipitate colony induced dislocations, and the abrupt crystallographic orientation change across the GB. The resulting dislocation loop generation facilitated the deformation process during nanoindentation and therefore softened the material.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.2011.265", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "direct silicon", 
      "mechanical behavior", 
      "mechanical properties", 
      "grain boundaries", 
      "grain boundary interface", 
      "type silicon wafers", 
      "high-resolution transmission electron microscopy", 
      "nanoindentation loading", 
      "impact of impurities", 
      "silicon hardness", 
      "deformation process", 
      "silicon wafers", 
      "crystallographic orientation changes", 
      "boundary interface", 
      "hardness changes", 
      "wafers", 
      "nanoindentation", 
      "local deformation", 
      "transmission electron microscopy", 
      "effect of impurities", 
      "dislocation loop generation", 
      "silicon", 
      "GB interface", 
      "electron microscopy", 
      "Si", 
      "Cu contamination", 
      "interface", 
      "orientation technique", 
      "direct Si", 
      "orientation changes", 
      "hardness", 
      "impurities", 
      "properties", 
      "deformation", 
      "boundaries", 
      "loading", 
      "Fe", 
      "Cu", 
      "loop generation", 
      "behavior", 
      "materials", 
      "dislocations", 
      "microscopy", 
      "generation", 
      "process", 
      "technique", 
      "effect", 
      "weakening", 
      "model", 
      "contamination", 
      "gradual weakening", 
      "remarkable differences", 
      "GB", 
      "changes", 
      "impact", 
      "samples", 
      "Abstract", 
      "opposite effect", 
      "differences", 
      "colonies", 
      "hybrid orientation technique", 
      "abrupt hardness changes", 
      "abrupt crystallographic orientation change"
    ], 
    "name": "Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded wafers", 
    "pagination": "349-355", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011287228"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.2011.265"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.2011.265", 
      "https://app.dimensions.ai/details/publication/pub.1011287228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.2011.265"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2011.265'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2011.265'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2011.265'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2011.265'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      96 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.2011.265 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf2f574bd74bc40659963b9eca4284941
4 schema:citation sg:pub.10.1007/bf00541038
5 sg:pub.10.1007/bf00617708
6 sg:pub.10.1007/bf00823224
7 sg:pub.10.1007/bf02402849
8 sg:pub.10.1557/jmr.1986.0601
9 sg:pub.10.1557/jmr.1992.1564
10 sg:pub.10.1557/jmr.1998.0147
11 sg:pub.10.1557/jmr.2004.19.1.3
12 schema:datePublished 2011-09-27
13 schema:datePublishedReg 2011-09-27
14 schema:description Abstract Nanoindentation was used to examine the impact of impurities and grain boundaries on the mechanical properties of a “model” (110)/(100) grain boundary (GB) interface prepared using direct silicon bonding via the hybrid orientation technique of (110) and (100) p-type silicon wafers. Remarkable differences were found between the mechanical behavior of Fe- and Cu-contaminated samples. The direct silicon bonded wafers contaminated with either Fe or Cu showed opposite effects on mechanical properties, with Fe enhancing the silicon hardness, while Cu contamination induces a gradual weakening. High-resolution transmission electron microscopy was used to verify that the abrupt hardness changes observed during increasing nanoindentation loading is attributed to local deformation induced by the GB interface, Cu precipitate colony induced dislocations, and the abrupt crystallographic orientation change across the GB. The resulting dislocation loop generation facilitated the deformation process during nanoindentation and therefore softened the material.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N18a66a9b56fa4019a0f1bf67d83e97d3
19 Nfeedaf1b797a4d40b530e012c34f6863
20 sg:journal.1357547
21 schema:keywords Abstract
22 Cu
23 Cu contamination
24 Fe
25 GB
26 GB interface
27 Si
28 abrupt crystallographic orientation change
29 abrupt hardness changes
30 behavior
31 boundaries
32 boundary interface
33 changes
34 colonies
35 contamination
36 crystallographic orientation changes
37 deformation
38 deformation process
39 differences
40 direct Si
41 direct silicon
42 dislocation loop generation
43 dislocations
44 effect
45 effect of impurities
46 electron microscopy
47 generation
48 gradual weakening
49 grain boundaries
50 grain boundary interface
51 hardness
52 hardness changes
53 high-resolution transmission electron microscopy
54 hybrid orientation technique
55 impact
56 impact of impurities
57 impurities
58 interface
59 loading
60 local deformation
61 loop generation
62 materials
63 mechanical behavior
64 mechanical properties
65 microscopy
66 model
67 nanoindentation
68 nanoindentation loading
69 opposite effect
70 orientation changes
71 orientation technique
72 process
73 properties
74 remarkable differences
75 samples
76 silicon
77 silicon hardness
78 silicon wafers
79 technique
80 transmission electron microscopy
81 type silicon wafers
82 wafers
83 weakening
84 schema:name Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded wafers
85 schema:pagination 349-355
86 schema:productId N4d37d69a28324d1abb2f08edf41e178b
87 N9a80279b321341908ddaed9ce1cb530d
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011287228
89 https://doi.org/10.1557/jmr.2011.265
90 schema:sdDatePublished 2022-01-01T18:27
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N4aac63787d3343fba546836aa70a444e
93 schema:url https://doi.org/10.1557/jmr.2011.265
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N18a66a9b56fa4019a0f1bf67d83e97d3 schema:volumeNumber 27
98 rdf:type schema:PublicationVolume
99 N4aac63787d3343fba546836aa70a444e schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N4d37d69a28324d1abb2f08edf41e178b schema:name dimensions_id
102 schema:value pub.1011287228
103 rdf:type schema:PropertyValue
104 N96bdf37229a44abe91041a6ff8ed8bd8 rdf:first sg:person.012265061143.15
105 rdf:rest Nc855b87ac9eb480f9f89bdd9a90a2066
106 N9a80279b321341908ddaed9ce1cb530d schema:name doi
107 schema:value 10.1557/jmr.2011.265
108 rdf:type schema:PropertyValue
109 Na9bd94e331ba451ab7164ddc413bdcc7 rdf:first sg:person.011467206235.26
110 rdf:rest N96bdf37229a44abe91041a6ff8ed8bd8
111 Nc855b87ac9eb480f9f89bdd9a90a2066 rdf:first sg:person.014024565415.82
112 rdf:rest rdf:nil
113 Nf2f574bd74bc40659963b9eca4284941 rdf:first sg:person.07651453533.73
114 rdf:rest Na9bd94e331ba451ab7164ddc413bdcc7
115 Nfeedaf1b797a4d40b530e012c34f6863 schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
121 schema:name Materials Engineering
122 rdf:type schema:DefinedTerm
123 sg:journal.1357547 schema:issn 0884-2914
124 2044-5326
125 schema:name Journal of Materials Research
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.011467206235.26 schema:affiliation grid-institutes:grid.13402.34
129 schema:familyName Yu
130 schema:givenName Xuegong
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011467206235.26
132 rdf:type schema:Person
133 sg:person.012265061143.15 schema:affiliation grid-institutes:grid.474699.1
134 schema:familyName Seacrist
135 schema:givenName Mike
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012265061143.15
137 rdf:type schema:Person
138 sg:person.014024565415.82 schema:affiliation grid-institutes:grid.40803.3f
139 schema:familyName Rozgonyi
140 schema:givenName George
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014024565415.82
142 rdf:type schema:Person
143 sg:person.07651453533.73 schema:affiliation grid-institutes:grid.40803.3f
144 schema:familyName Youssef
145 schema:givenName Khaled
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651453533.73
147 rdf:type schema:Person
148 sg:pub.10.1007/bf00541038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345389
149 https://doi.org/10.1007/bf00541038
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf00617708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029700042
152 https://doi.org/10.1007/bf00617708
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf00823224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011710428
155 https://doi.org/10.1007/bf00823224
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf02402849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023707331
158 https://doi.org/10.1007/bf02402849
159 rdf:type schema:CreativeWork
160 sg:pub.10.1557/jmr.1986.0601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033087180
161 https://doi.org/10.1557/jmr.1986.0601
162 rdf:type schema:CreativeWork
163 sg:pub.10.1557/jmr.1992.1564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043643805
164 https://doi.org/10.1557/jmr.1992.1564
165 rdf:type schema:CreativeWork
166 sg:pub.10.1557/jmr.1998.0147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053563900
167 https://doi.org/10.1557/jmr.1998.0147
168 rdf:type schema:CreativeWork
169 sg:pub.10.1557/jmr.2004.19.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041295830
170 https://doi.org/10.1557/jmr.2004.19.1.3
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.13402.34 schema:alternateName Department of Materials Science Engineering and State Key Lab of Silicon Materials, Zhejiang University, 310027 Hangzhou, People’s Republic of China
173 schema:name Department of Materials Science Engineering and State Key Lab of Silicon Materials, Zhejiang University, 310027 Hangzhou, People’s Republic of China
174 rdf:type schema:Organization
175 grid-institutes:grid.40803.3f schema:alternateName Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
176 schema:name Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
177 rdf:type schema:Organization
178 grid-institutes:grid.474699.1 schema:alternateName MEMC Electronic Materials, Inc, ., St. Peters, Missouri 63376
179 schema:name MEMC Electronic Materials, Inc, ., St. Peters, Missouri 63376
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...