Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

Mary Laura Lind, Byeong-Heon Jeong, Arun Subramani, Xiaofei Huang, Eric M.V. Hoek

ABSTRACT

Hybrid zeolite-polyamide thin film nanocomposite (TFN) reverse osmosis membranes were synthesized by incorporating Linde type A (LTA)-type zeolite molecular sieve nanocrystals in the interfacial polymerization reaction used to form polyamide thin films. Nanocrystals were prepared with two different mobile cations (Na + and Ag + ) exchanged within the LTA crystal matrix. Incorporation of molecular sieve nanocrystals into polyamide thin films during interfacial polymerization was verified by infrared spectroscopy. Both TFN membranes exhibited higher water permeability, while maintaining similar salt rejection to pure polyamide thin film composite membranes. Nanocomposite thin films containing LTA nanocrystals in the silver form (AgA) produced a greater increase in water permeability than those in the sodium form (NaA). Furthermore, AgA-TFN membranes exhibited more hydrophilic and smooth interfaces, which appeared to inhibit adhesion of bacteria cells onto the membranes. The AgA nanocrystals exhibited significant bactericidal activity; however, when encapsulated within polyamide thin films the antimicrobial activity was significantly reduced. More... »

PAGES

1624-1631

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.2009.0189

DOI

http://dx.doi.org/10.1557/jmr.2009.0189

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017138552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Lind", 
        "givenName": "Mary Laura", 
        "id": "sg:person.01222475155.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222475155.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California\u2014Los Angeles, Los Angeles, California 90095", 
          "id": "http://www.grid.ac/institutes/grid.509979.b", 
          "name": [
            "UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California\u2014Los Angeles, Los Angeles, California 90095"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Byeong-Heon", 
        "id": "sg:person.015263204141.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263204141.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California\u2014Los Angeles, Los Angeles, California 90095", 
          "id": "http://www.grid.ac/institutes/grid.509979.b", 
          "name": [
            "UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California\u2014Los Angeles, Los Angeles, California 90095"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramani", 
        "givenName": "Arun", 
        "id": "sg:person.014120423234.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120423234.16"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Xiaofei", 
        "id": "sg:person.01101734674.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101734674.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California\u2014Los Angeles, Los Angeles, California 90095", 
          "id": "http://www.grid.ac/institutes/grid.509979.b", 
          "name": [
            "UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California\u2014Los Angeles, Los Angeles, California 90095"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoek", 
        "givenName": "Eric M.V.", 
        "id": "sg:person.016060564541.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016060564541.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1009253223055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020679031", 
          "https://doi.org/10.1023/a:1009253223055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11239-006-7658-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035431017", 
          "https://doi.org/10.1007/s11239-006-7658-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2116/analsci.22.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011110093", 
          "https://doi.org/10.2116/analsci.22.325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-005-7523-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016306940", 
          "https://doi.org/10.1007/s11051-005-7523-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": " Hybrid zeolite-polyamide thin film nanocomposite (TFN) reverse osmosis membranes were synthesized by incorporating Linde type A (LTA)-type zeolite molecular sieve nanocrystals in the interfacial polymerization reaction used to form polyamide thin films. Nanocrystals were prepared with two different mobile cations (Na + and Ag + ) exchanged within the LTA crystal matrix. Incorporation of molecular sieve nanocrystals into polyamide thin films during interfacial polymerization was verified by infrared spectroscopy. Both TFN membranes exhibited higher water permeability, while maintaining similar salt rejection to pure polyamide thin film composite membranes. Nanocomposite thin films containing LTA nanocrystals in the silver form (AgA) produced a greater increase in water permeability than those in the sodium form (NaA). Furthermore, AgA-TFN membranes exhibited more hydrophilic and smooth interfaces, which appeared to inhibit adhesion of bacteria cells onto the membranes. The AgA nanocrystals exhibited significant bactericidal activity; however, when encapsulated within polyamide thin films the antimicrobial activity was significantly reduced. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.2009.0189", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "thin film nanocomposites", 
      "polyamide thin films", 
      "thin films", 
      "thin film nanocomposite membranes", 
      "nanocomposite thin films", 
      "similar salt rejection", 
      "polyamide thin film composite membranes", 
      "TFN membranes", 
      "nanocomposite membranes", 
      "thin film composite membranes", 
      "interfacial polymerization reaction", 
      "film nanocomposites", 
      "nanocrystals", 
      "film composite membranes", 
      "LTA nanocrystals", 
      "water permeability", 
      "silver forms", 
      "high water permeability", 
      "interfacial polymerization", 
      "significant bactericidal activity", 
      "salt rejection", 
      "bacteria cells", 
      "composite membranes", 
      "smooth interface", 
      "osmosis membranes", 
      "films", 
      "Infrared Spectroscopy", 
      "Linde Type A", 
      "crystal matrix", 
      "nanocomposites", 
      "antimicrobial activity", 
      "mobile cations", 
      "bactericidal activity", 
      "spectroscopy", 
      "permeability", 
      "sodium form", 
      "polymerization reaction", 
      "membrane", 
      "interface", 
      "incorporation", 
      "matrix", 
      "polymerization", 
      "adhesion", 
      "cations", 
      "reaction", 
      "activity", 
      "cells", 
      "increase", 
      "rejection", 
      "effect", 
      "form", 
      "greater increase", 
      "type A"
    ], 
    "name": "Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes", 
    "pagination": "1624-1631", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017138552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.2009.0189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.2009.0189", 
      "https://app.dimensions.ai/details/publication/pub.1017138552"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.2009.0189"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2009.0189'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2009.0189'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2009.0189'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2009.0189'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      83 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.2009.0189 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0912
4 schema:author N9f1c320f85fb475fba4fbeb5828cab6d
5 schema:citation sg:pub.10.1007/s11051-005-7523-5
6 sg:pub.10.1007/s11239-006-7658-y
7 sg:pub.10.1023/a:1009253223055
8 sg:pub.10.2116/analsci.22.325
9 schema:datePublished 2009-05
10 schema:datePublishedReg 2009-05-01
11 schema:description Hybrid zeolite-polyamide thin film nanocomposite (TFN) reverse osmosis membranes were synthesized by incorporating Linde type A (LTA)-type zeolite molecular sieve nanocrystals in the interfacial polymerization reaction used to form polyamide thin films. Nanocrystals were prepared with two different mobile cations (Na + and Ag + ) exchanged within the LTA crystal matrix. Incorporation of molecular sieve nanocrystals into polyamide thin films during interfacial polymerization was verified by infrared spectroscopy. Both TFN membranes exhibited higher water permeability, while maintaining similar salt rejection to pure polyamide thin film composite membranes. Nanocomposite thin films containing LTA nanocrystals in the silver form (AgA) produced a greater increase in water permeability than those in the sodium form (NaA). Furthermore, AgA-TFN membranes exhibited more hydrophilic and smooth interfaces, which appeared to inhibit adhesion of bacteria cells onto the membranes. The AgA nanocrystals exhibited significant bactericidal activity; however, when encapsulated within polyamide thin films the antimicrobial activity was significantly reduced.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Nbd157e8fc368424abccfd63bef4bc6c2
15 Nc48dec1d15384c9baea98d807d543a80
16 sg:journal.1357547
17 schema:keywords Infrared Spectroscopy
18 LTA nanocrystals
19 Linde Type A
20 TFN membranes
21 activity
22 adhesion
23 antimicrobial activity
24 bacteria cells
25 bactericidal activity
26 cations
27 cells
28 composite membranes
29 crystal matrix
30 effect
31 film composite membranes
32 film nanocomposites
33 films
34 form
35 greater increase
36 high water permeability
37 incorporation
38 increase
39 interface
40 interfacial polymerization
41 interfacial polymerization reaction
42 matrix
43 membrane
44 mobile cations
45 nanocomposite membranes
46 nanocomposite thin films
47 nanocomposites
48 nanocrystals
49 osmosis membranes
50 permeability
51 polyamide thin film composite membranes
52 polyamide thin films
53 polymerization
54 polymerization reaction
55 reaction
56 rejection
57 salt rejection
58 significant bactericidal activity
59 silver forms
60 similar salt rejection
61 smooth interface
62 sodium form
63 spectroscopy
64 thin film composite membranes
65 thin film nanocomposite membranes
66 thin film nanocomposites
67 thin films
68 type A
69 water permeability
70 schema:name Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes
71 schema:pagination 1624-1631
72 schema:productId N6637aae85c224a199c28341315b78a7f
73 N9b615ee06751411b9eb365e66d6bb2da
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017138552
75 https://doi.org/10.1557/jmr.2009.0189
76 schema:sdDatePublished 2022-09-02T15:54
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N61b5deabfeed400cbb90e3bbd3f73d95
79 schema:url https://doi.org/10.1557/jmr.2009.0189
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N61b5deabfeed400cbb90e3bbd3f73d95 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N6637aae85c224a199c28341315b78a7f schema:name doi
86 schema:value 10.1557/jmr.2009.0189
87 rdf:type schema:PropertyValue
88 N73c0b215cebf4008b582d9d56ebb0d03 rdf:first sg:person.01101734674.15
89 rdf:rest N9ce9202218ad464d9f086584e2eb3919
90 N9829bea0cc834f9ba9e0a22a613169aa rdf:first sg:person.014120423234.16
91 rdf:rest N73c0b215cebf4008b582d9d56ebb0d03
92 N9b615ee06751411b9eb365e66d6bb2da schema:name dimensions_id
93 schema:value pub.1017138552
94 rdf:type schema:PropertyValue
95 N9ce9202218ad464d9f086584e2eb3919 rdf:first sg:person.016060564541.05
96 rdf:rest rdf:nil
97 N9f1c320f85fb475fba4fbeb5828cab6d rdf:first sg:person.01222475155.77
98 rdf:rest Nda983abef0264173843e5e2e0e91beba
99 Nbd157e8fc368424abccfd63bef4bc6c2 schema:issueNumber 5
100 rdf:type schema:PublicationIssue
101 Nc48dec1d15384c9baea98d807d543a80 schema:volumeNumber 24
102 rdf:type schema:PublicationVolume
103 Nda983abef0264173843e5e2e0e91beba rdf:first sg:person.015263204141.53
104 rdf:rest N9829bea0cc834f9ba9e0a22a613169aa
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
112 schema:name Materials Engineering
113 rdf:type schema:DefinedTerm
114 sg:journal.1357547 schema:issn 0884-2914
115 2044-5326
116 schema:name Journal of Materials Research
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01101734674.15 schema:familyName Huang
120 schema:givenName Xiaofei
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101734674.15
122 rdf:type schema:Person
123 sg:person.01222475155.77 schema:familyName Lind
124 schema:givenName Mary Laura
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222475155.77
126 rdf:type schema:Person
127 sg:person.014120423234.16 schema:affiliation grid-institutes:grid.509979.b
128 schema:familyName Subramani
129 schema:givenName Arun
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120423234.16
131 rdf:type schema:Person
132 sg:person.015263204141.53 schema:affiliation grid-institutes:grid.509979.b
133 schema:familyName Jeong
134 schema:givenName Byeong-Heon
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263204141.53
136 rdf:type schema:Person
137 sg:person.016060564541.05 schema:affiliation grid-institutes:grid.509979.b
138 schema:familyName Hoek
139 schema:givenName Eric M.V.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016060564541.05
141 rdf:type schema:Person
142 sg:pub.10.1007/s11051-005-7523-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016306940
143 https://doi.org/10.1007/s11051-005-7523-5
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11239-006-7658-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035431017
146 https://doi.org/10.1007/s11239-006-7658-y
147 rdf:type schema:CreativeWork
148 sg:pub.10.1023/a:1009253223055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020679031
149 https://doi.org/10.1023/a:1009253223055
150 rdf:type schema:CreativeWork
151 sg:pub.10.2116/analsci.22.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011110093
152 https://doi.org/10.2116/analsci.22.325
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.509979.b schema:alternateName UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California 90095
155 schema:name UCLA Civil & Environmental Engineering Department, and California NanoSystems Institute, University of California—Los Angeles, Los Angeles, California 90095
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...