Superior glass-forming ability of CuZr alloys from minor additions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07-01

AUTHORS

P. Yu, H.Y. Bai, W.H. Wang

ABSTRACT

We report a novel phenomenon in which minor element additions (∼1 at.%) can dramatically enhance the glass-forming ability (GFA) of CuZr(Al) metallic alloy, which can be cast into glasses with large cross-section sizes using a conventional casting method. The minor additions cause the liquidus temperature T l to decrease from 1219 (for Cu 50 Zr 50 ) to 1139 K [for (Cu 50 Zr 50 ) 92 Al 7 Gd 1 ], and the reduced glass transition temperature T rg (= T g / T l ) of the alloys increases from 0.550 (for Cu 50 Zr 50 ) to 0.613 [for (Cu 50 Zr 50 ) 92 Al 7 Gd 1 ]. The mechanism involved in the achievement of the superior GFA is explained by the stronger tendency of short-range ordering in the stronger microalloyed alloys as well as the thermodynamic and kinetic aspects. More... »

PAGES

1674-1679

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.2006.0212

DOI

http://dx.doi.org/10.1557/jmr.2006.0212

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012468949


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "P.", 
        "id": "sg:person.016067657177.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016067657177.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "H.Y.", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "W.H.", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021477303", 
          "https://doi.org/10.1038/nmat1219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2004.0176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040590901", 
          "https://doi.org/10.1557/jmr.2004.0176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047372680", 
          "https://doi.org/10.1038/nature02947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366303a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015468603", 
          "https://doi.org/10.1038/366303a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07-01", 
    "datePublishedReg": "2006-07-01", 
    "description": " We report a novel phenomenon in which minor element additions (\u223c1 at.%) can dramatically enhance the glass-forming ability (GFA) of CuZr(Al) metallic alloy, which can be cast into glasses with large cross-section sizes using a conventional casting method. The minor additions cause the liquidus temperature T l to decrease from 1219 (for Cu 50 Zr 50 ) to 1139 K [for (Cu 50 Zr 50 ) 92 Al 7 Gd 1 ], and the reduced glass transition temperature T rg (= T g / T l ) of the alloys increases from 0.550 (for Cu 50 Zr 50 ) to 0.613 [for (Cu 50 Zr 50 ) 92 Al 7 Gd 1 ]. The mechanism involved in the achievement of the superior GFA is explained by the stronger tendency of short-range ordering in the stronger microalloyed alloys as well as the thermodynamic and kinetic aspects. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.2006.0212", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "glass-forming ability", 
      "superior glass-forming ability", 
      "glass transition temperature T rg", 
      "minor addition", 
      "large cross-section sizes", 
      "conventional casting method", 
      "minor element additions", 
      "cross-section size", 
      "casting method", 
      "element addition", 
      "metallic alloys", 
      "T rg", 
      "alloy", 
      "short-range ordering", 
      "kinetic aspects", 
      "CuZr", 
      "temperature T", 
      "novel phenomenon", 
      "glass", 
      "addition", 
      "phenomenon", 
      "size", 
      "method", 
      "strong tendency", 
      "ability", 
      "ordering", 
      "mechanism", 
      "tendency", 
      "aspects", 
      "RG", 
      "achievement"
    ], 
    "name": "Superior glass-forming ability of CuZr alloys from minor additions", 
    "pagination": "1674-1679", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012468949"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.2006.0212"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.2006.0212", 
      "https://app.dimensions.ai/details/publication/pub.1012468949"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.2006.0212"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.2006.0212'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.2006.0212'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.2006.0212'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.2006.0212'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      60 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.2006.0212 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ncb01945f7bb649dcba9a13bbe16d9bef
4 schema:citation sg:pub.10.1038/35065704
5 sg:pub.10.1038/366303a0
6 sg:pub.10.1038/nature02947
7 sg:pub.10.1038/nmat1219
8 sg:pub.10.1557/jmr.2004.0176
9 schema:datePublished 2006-07-01
10 schema:datePublishedReg 2006-07-01
11 schema:description We report a novel phenomenon in which minor element additions (∼1 at.%) can dramatically enhance the glass-forming ability (GFA) of CuZr(Al) metallic alloy, which can be cast into glasses with large cross-section sizes using a conventional casting method. The minor additions cause the liquidus temperature T l to decrease from 1219 (for Cu 50 Zr 50 ) to 1139 K [for (Cu 50 Zr 50 ) 92 Al 7 Gd 1 ], and the reduced glass transition temperature T rg (= T g / T l ) of the alloys increases from 0.550 (for Cu 50 Zr 50 ) to 0.613 [for (Cu 50 Zr 50 ) 92 Al 7 Gd 1 ]. The mechanism involved in the achievement of the superior GFA is explained by the stronger tendency of short-range ordering in the stronger microalloyed alloys as well as the thermodynamic and kinetic aspects.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N1151974d0531467fbee29da8f57e9d92
15 N8769280732654088b9b83eb54aa6f83e
16 sg:journal.1357547
17 schema:keywords CuZr
18 RG
19 T rg
20 ability
21 achievement
22 addition
23 alloy
24 aspects
25 casting method
26 conventional casting method
27 cross-section size
28 element addition
29 glass
30 glass transition temperature T rg
31 glass-forming ability
32 kinetic aspects
33 large cross-section sizes
34 mechanism
35 metallic alloys
36 method
37 minor addition
38 minor element additions
39 novel phenomenon
40 ordering
41 phenomenon
42 short-range ordering
43 size
44 strong tendency
45 superior glass-forming ability
46 temperature T
47 tendency
48 schema:name Superior glass-forming ability of CuZr alloys from minor additions
49 schema:pagination 1674-1679
50 schema:productId N4c1556b3e39c44e4891984b772d3c212
51 Nbaeffa2283324842bccf4bbe6ea4cf71
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012468949
53 https://doi.org/10.1557/jmr.2006.0212
54 schema:sdDatePublished 2022-09-02T15:52
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ne9b020d8e66a407f86c5e6b4b906b643
57 schema:url https://doi.org/10.1557/jmr.2006.0212
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1151974d0531467fbee29da8f57e9d92 schema:issueNumber 7
62 rdf:type schema:PublicationIssue
63 N4c1556b3e39c44e4891984b772d3c212 schema:name dimensions_id
64 schema:value pub.1012468949
65 rdf:type schema:PropertyValue
66 N8769280732654088b9b83eb54aa6f83e schema:volumeNumber 21
67 rdf:type schema:PublicationVolume
68 N9bfbe885c00746acb52cb9dc54d3fbaf rdf:first sg:person.0640310271.16
69 rdf:rest Nb4d7e5284a654e63800717701a33f1ef
70 Nb4d7e5284a654e63800717701a33f1ef rdf:first sg:person.01363714371.28
71 rdf:rest rdf:nil
72 Nbaeffa2283324842bccf4bbe6ea4cf71 schema:name doi
73 schema:value 10.1557/jmr.2006.0212
74 rdf:type schema:PropertyValue
75 Ncb01945f7bb649dcba9a13bbe16d9bef rdf:first sg:person.016067657177.52
76 rdf:rest N9bfbe885c00746acb52cb9dc54d3fbaf
77 Ne9b020d8e66a407f86c5e6b4b906b643 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1357547 schema:issn 0884-2914
86 2044-5326
87 schema:name Journal of Materials Research
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.458438.6
91 schema:familyName Wang
92 schema:givenName W.H.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
94 rdf:type schema:Person
95 sg:person.016067657177.52 schema:affiliation grid-institutes:grid.458438.6
96 schema:familyName Yu
97 schema:givenName P.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016067657177.52
99 rdf:type schema:Person
100 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.458438.6
101 schema:familyName Bai
102 schema:givenName H.Y.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
104 rdf:type schema:Person
105 sg:pub.10.1038/35065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355581
106 https://doi.org/10.1038/35065704
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/366303a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015468603
109 https://doi.org/10.1038/366303a0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature02947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047372680
112 https://doi.org/10.1038/nature02947
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nmat1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477303
115 https://doi.org/10.1038/nmat1219
116 rdf:type schema:CreativeWork
117 sg:pub.10.1557/jmr.2004.0176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040590901
118 https://doi.org/10.1557/jmr.2004.0176
119 rdf:type schema:CreativeWork
120 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China
121 schema:name Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...