Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-05

AUTHORS

V. Subramanian, M.G. Lakshmikantha, J.A. Sekhar

ABSTRACT

A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation. More... »

PAGES

1235-1246

References to SciGraph publications

  • 1980-01. Theory of filtrational combustion in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1993-12. Influence of multi-dimensional oscillating combustion fronts on thermal profiles in JOURNAL OF MATERIALS SCIENCE
  • 1990-02-01. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials in JOURNAL OF MATERIALS SCIENCE
  • 1979-01. Some principles of combustion of titanium-silicon mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1978-09. Pressure dependence of rate of gas-free combustion in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1978-07. Principles of combustion of tantalum-carbon mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1993-03. An investigation of the effect of porosity and diluents on micropyretic synthesis in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1992-01. Numerical modeling of solidification combustion synthesis in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-09. Combustion of porous compositions with low gas content in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1557/jmr.1995.1235

    DOI

    http://dx.doi.org/10.1557/jmr.1995.1235

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012329515


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Subramanian", 
            "givenName": "V.", 
            "id": "sg:person.07613472247.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07613472247.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lakshmikantha", 
            "givenName": "M.G.", 
            "id": "sg:person.010411052647.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411052647.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sekhar", 
            "givenName": "J.A.", 
            "id": "sg:person.016661564161.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00789716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032847285", 
              "https://doi.org/10.1007/bf00789716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00785326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046839018", 
              "https://doi.org/10.1007/bf00785326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032668767", 
              "https://doi.org/10.1007/bf02656631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01352204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018732043", 
              "https://doi.org/10.1007/bf01352204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029666983", 
              "https://doi.org/10.1007/bf00756241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02660847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047117684", 
              "https://doi.org/10.1007/bf02660847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00585421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021224372", 
              "https://doi.org/10.1007/bf00585421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00784949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019183089", 
              "https://doi.org/10.1007/bf00784949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00742950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009528189", 
              "https://doi.org/10.1007/bf00742950"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-05", 
        "datePublishedReg": "1995-05-01", 
        "description": "A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation.", 
        "genre": "article", 
        "id": "sg:pub.10.1557/jmr.1995.1235", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1357547", 
            "issn": [
              "0884-2914", 
              "2044-5326"
            ], 
            "name": "Journal of Materials Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "micropyretic synthesis", 
          "combustion reaction zone", 
          "combustion wave propagation", 
          "gas pressure", 
          "gas evolution", 
          "temperature of gas", 
          "initial gas pressure", 
          "porous compacts", 
          "solid phase", 
          "pressure increase", 
          "interaction of gas", 
          "energy equation", 
          "D'Arcy's law", 
          "gas flow", 
          "gas evolution reactions", 
          "dynamic modeling", 
          "reaction zone", 
          "wave propagation", 
          "numerical analysis", 
          "pressure rise", 
          "continuity equation", 
          "gas law", 
          "mathematical model", 
          "gas", 
          "activation energy", 
          "evolution reaction", 
          "pre-exponential factor", 
          "temperature", 
          "equations", 
          "compacts", 
          "pressure", 
          "phase", 
          "flow", 
          "propagation", 
          "modeling", 
          "law", 
          "permeability", 
          "energy", 
          "zone", 
          "increase", 
          "evolution", 
          "kinetics", 
          "magnitude", 
          "model", 
          "multistep reactions", 
          "consideration", 
          "reaction", 
          "synthesis", 
          "analysis", 
          "rise", 
          "place", 
          "interaction", 
          "variables", 
          "factors", 
          "relationship", 
          "multistep reactive micropyretic synthesis", 
          "reactive micropyretic synthesis"
        ], 
        "name": "Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis", 
        "pagination": "1235-1246", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012329515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1557/jmr.1995.1235"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1557/jmr.1995.1235", 
          "https://app.dimensions.ai/details/publication/pub.1012329515"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_279.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1557/jmr.1995.1235"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      22 PREDICATES      92 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1557/jmr.1995.1235 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N9f6f9301383f4cedbc05c46e713b5acb
    4 schema:citation sg:pub.10.1007/bf00585421
    5 sg:pub.10.1007/bf00742950
    6 sg:pub.10.1007/bf00756241
    7 sg:pub.10.1007/bf00784949
    8 sg:pub.10.1007/bf00785326
    9 sg:pub.10.1007/bf00789716
    10 sg:pub.10.1007/bf01352204
    11 sg:pub.10.1007/bf02656631
    12 sg:pub.10.1007/bf02660847
    13 schema:datePublished 1995-05
    14 schema:datePublishedReg 1995-05-01
    15 schema:description A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N4ed635fec4f946f9b68df4464cf57986
    20 Nbc6b94e5790141f1a574e704e7007995
    21 sg:journal.1357547
    22 schema:keywords D'Arcy's law
    23 activation energy
    24 analysis
    25 combustion reaction zone
    26 combustion wave propagation
    27 compacts
    28 consideration
    29 continuity equation
    30 dynamic modeling
    31 energy
    32 energy equation
    33 equations
    34 evolution
    35 evolution reaction
    36 factors
    37 flow
    38 gas
    39 gas evolution
    40 gas evolution reactions
    41 gas flow
    42 gas law
    43 gas pressure
    44 increase
    45 initial gas pressure
    46 interaction
    47 interaction of gas
    48 kinetics
    49 law
    50 magnitude
    51 mathematical model
    52 micropyretic synthesis
    53 model
    54 modeling
    55 multistep reactions
    56 multistep reactive micropyretic synthesis
    57 numerical analysis
    58 permeability
    59 phase
    60 place
    61 porous compacts
    62 pre-exponential factor
    63 pressure
    64 pressure increase
    65 pressure rise
    66 propagation
    67 reaction
    68 reaction zone
    69 reactive micropyretic synthesis
    70 relationship
    71 rise
    72 solid phase
    73 synthesis
    74 temperature
    75 temperature of gas
    76 variables
    77 wave propagation
    78 zone
    79 schema:name Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis
    80 schema:pagination 1235-1246
    81 schema:productId N75914ada42e64ae49ab6cea61929e75a
    82 N9488f84b8296414191af9add9516a143
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012329515
    84 https://doi.org/10.1557/jmr.1995.1235
    85 schema:sdDatePublished 2022-01-01T18:08
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher Ne5e6d91c7894458fa139fd762416eaf9
    88 schema:url https://doi.org/10.1557/jmr.1995.1235
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N4ed635fec4f946f9b68df4464cf57986 schema:issueNumber 5
    93 rdf:type schema:PublicationIssue
    94 N75914ada42e64ae49ab6cea61929e75a schema:name doi
    95 schema:value 10.1557/jmr.1995.1235
    96 rdf:type schema:PropertyValue
    97 N9488f84b8296414191af9add9516a143 schema:name dimensions_id
    98 schema:value pub.1012329515
    99 rdf:type schema:PropertyValue
    100 N95c56b6b511a4198b72f2574e3921ad9 rdf:first sg:person.010411052647.05
    101 rdf:rest Na8e2b6b96ed04ded80d0a83a0b9a2451
    102 N9f6f9301383f4cedbc05c46e713b5acb rdf:first sg:person.07613472247.18
    103 rdf:rest N95c56b6b511a4198b72f2574e3921ad9
    104 Na8e2b6b96ed04ded80d0a83a0b9a2451 rdf:first sg:person.016661564161.49
    105 rdf:rest rdf:nil
    106 Nbc6b94e5790141f1a574e704e7007995 schema:volumeNumber 10
    107 rdf:type schema:PublicationVolume
    108 Ne5e6d91c7894458fa139fd762416eaf9 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Interdisciplinary Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1357547 schema:issn 0884-2914
    117 2044-5326
    118 schema:name Journal of Materials Research
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.010411052647.05 schema:affiliation grid-institutes:grid.24827.3b
    122 schema:familyName Lakshmikantha
    123 schema:givenName M.G.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411052647.05
    125 rdf:type schema:Person
    126 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.24827.3b
    127 schema:familyName Sekhar
    128 schema:givenName J.A.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
    130 rdf:type schema:Person
    131 sg:person.07613472247.18 schema:affiliation grid-institutes:grid.24827.3b
    132 schema:familyName Subramanian
    133 schema:givenName V.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07613472247.18
    135 rdf:type schema:Person
    136 sg:pub.10.1007/bf00585421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021224372
    137 https://doi.org/10.1007/bf00585421
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf00742950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009528189
    140 https://doi.org/10.1007/bf00742950
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf00756241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029666983
    143 https://doi.org/10.1007/bf00756241
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf00784949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183089
    146 https://doi.org/10.1007/bf00784949
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf00785326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046839018
    149 https://doi.org/10.1007/bf00785326
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf00789716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032847285
    152 https://doi.org/10.1007/bf00789716
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf01352204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018732043
    155 https://doi.org/10.1007/bf01352204
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf02656631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032668767
    158 https://doi.org/10.1007/bf02656631
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf02660847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117684
    161 https://doi.org/10.1007/bf02660847
    162 rdf:type schema:CreativeWork
    163 grid-institutes:grid.24827.3b schema:alternateName Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
    164 schema:name Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...