Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-05

AUTHORS

V. Subramanian, M.G. Lakshmikantha, J.A. Sekhar

ABSTRACT

A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation. More... »

PAGES

1235-1246

References to SciGraph publications

  • 1980-01. Theory of filtrational combustion in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1993-12. Influence of multi-dimensional oscillating combustion fronts on thermal profiles in JOURNAL OF MATERIALS SCIENCE
  • 1990-02-01. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials in JOURNAL OF MATERIALS SCIENCE
  • 1979-01. Some principles of combustion of titanium-silicon mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1978-09. Pressure dependence of rate of gas-free combustion in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1978-07. Principles of combustion of tantalum-carbon mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 1992-01. Numerical modeling of solidification combustion synthesis in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1991-09. Combustion of porous compositions with low gas content in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1557/jmr.1995.1235

    DOI

    http://dx.doi.org/10.1557/jmr.1995.1235

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012329515


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Subramanian", 
            "givenName": "V.", 
            "id": "sg:person.07613472247.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07613472247.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lakshmikantha", 
            "givenName": "M.G.", 
            "id": "sg:person.010411052647.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411052647.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sekhar", 
            "givenName": "J.A.", 
            "id": "sg:person.016661564161.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00756241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029666983", 
              "https://doi.org/10.1007/bf00756241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00742950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009528189", 
              "https://doi.org/10.1007/bf00742950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00785326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046839018", 
              "https://doi.org/10.1007/bf00785326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00585421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021224372", 
              "https://doi.org/10.1007/bf00585421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00784949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019183089", 
              "https://doi.org/10.1007/bf00784949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00789716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032847285", 
              "https://doi.org/10.1007/bf00789716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032668767", 
              "https://doi.org/10.1007/bf02656631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02660847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047117684", 
              "https://doi.org/10.1007/bf02660847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01352204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018732043", 
              "https://doi.org/10.1007/bf01352204"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-05", 
        "datePublishedReg": "1995-05-01", 
        "description": "A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation.", 
        "genre": "article", 
        "id": "sg:pub.10.1557/jmr.1995.1235", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1357547", 
            "issn": [
              "0884-2914", 
              "2044-5326"
            ], 
            "name": "Journal of Materials Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "micropyretic synthesis", 
          "gas evolution", 
          "gas pressure", 
          "combustion reaction zone", 
          "combustion wave propagation", 
          "temperature of gas", 
          "initial gas pressure", 
          "pressure increase", 
          "gas evolution reactions", 
          "porous compacts", 
          "solid phase", 
          "interaction of gas", 
          "gas flow", 
          "energy equation", 
          "reaction zone", 
          "dynamic modeling", 
          "numerical analysis", 
          "D'Arcy's law", 
          "wave propagation", 
          "evolution reaction", 
          "pressure rise", 
          "continuity equation", 
          "gas law", 
          "mathematical model", 
          "activation energy", 
          "gas", 
          "pre-exponential factor", 
          "temperature", 
          "equations", 
          "pressure", 
          "compacts", 
          "phase", 
          "flow", 
          "propagation", 
          "modeling", 
          "law", 
          "permeability", 
          "energy", 
          "kinetics", 
          "zone", 
          "increase", 
          "evolution", 
          "multistep reactions", 
          "magnitude", 
          "model", 
          "reaction", 
          "consideration", 
          "synthesis", 
          "analysis", 
          "rise", 
          "interaction", 
          "variables", 
          "place", 
          "factors", 
          "relationship"
        ], 
        "name": "Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis", 
        "pagination": "1235-1246", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012329515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1557/jmr.1995.1235"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1557/jmr.1995.1235", 
          "https://app.dimensions.ai/details/publication/pub.1012329515"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_269.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1557/jmr.1995.1235"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.1995.1235'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      22 PREDICATES      90 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1557/jmr.1995.1235 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N95cf3ca0d3a44c4083f1246ad2168dd6
    4 schema:citation sg:pub.10.1007/bf00585421
    5 sg:pub.10.1007/bf00742950
    6 sg:pub.10.1007/bf00756241
    7 sg:pub.10.1007/bf00784949
    8 sg:pub.10.1007/bf00785326
    9 sg:pub.10.1007/bf00789716
    10 sg:pub.10.1007/bf01352204
    11 sg:pub.10.1007/bf02656631
    12 sg:pub.10.1007/bf02660847
    13 schema:datePublished 1995-05
    14 schema:datePublishedReg 1995-05-01
    15 schema:description A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N27dac99b9f234709887abeae66f8a54f
    20 Nfe65953a5aef4934b42ddd132aab1f80
    21 sg:journal.1357547
    22 schema:keywords D'Arcy's law
    23 activation energy
    24 analysis
    25 combustion reaction zone
    26 combustion wave propagation
    27 compacts
    28 consideration
    29 continuity equation
    30 dynamic modeling
    31 energy
    32 energy equation
    33 equations
    34 evolution
    35 evolution reaction
    36 factors
    37 flow
    38 gas
    39 gas evolution
    40 gas evolution reactions
    41 gas flow
    42 gas law
    43 gas pressure
    44 increase
    45 initial gas pressure
    46 interaction
    47 interaction of gas
    48 kinetics
    49 law
    50 magnitude
    51 mathematical model
    52 micropyretic synthesis
    53 model
    54 modeling
    55 multistep reactions
    56 numerical analysis
    57 permeability
    58 phase
    59 place
    60 porous compacts
    61 pre-exponential factor
    62 pressure
    63 pressure increase
    64 pressure rise
    65 propagation
    66 reaction
    67 reaction zone
    68 relationship
    69 rise
    70 solid phase
    71 synthesis
    72 temperature
    73 temperature of gas
    74 variables
    75 wave propagation
    76 zone
    77 schema:name Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis
    78 schema:pagination 1235-1246
    79 schema:productId N1777f56bb5f64e16bb8c9b35830e37ff
    80 N8c000786e06d41828625ea444d6e19f9
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012329515
    82 https://doi.org/10.1557/jmr.1995.1235
    83 schema:sdDatePublished 2022-05-20T07:19
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Na95b7d43677b4ccebfa3d68ba695d474
    86 schema:url https://doi.org/10.1557/jmr.1995.1235
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N1335a6bdd04847b0929439b8965cdaa0 rdf:first sg:person.010411052647.05
    91 rdf:rest N19ee271d54ac42b4bffffb48d2534b8a
    92 N1777f56bb5f64e16bb8c9b35830e37ff schema:name dimensions_id
    93 schema:value pub.1012329515
    94 rdf:type schema:PropertyValue
    95 N19ee271d54ac42b4bffffb48d2534b8a rdf:first sg:person.016661564161.49
    96 rdf:rest rdf:nil
    97 N27dac99b9f234709887abeae66f8a54f schema:volumeNumber 10
    98 rdf:type schema:PublicationVolume
    99 N8c000786e06d41828625ea444d6e19f9 schema:name doi
    100 schema:value 10.1557/jmr.1995.1235
    101 rdf:type schema:PropertyValue
    102 N95cf3ca0d3a44c4083f1246ad2168dd6 rdf:first sg:person.07613472247.18
    103 rdf:rest N1335a6bdd04847b0929439b8965cdaa0
    104 Na95b7d43677b4ccebfa3d68ba695d474 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 Nfe65953a5aef4934b42ddd132aab1f80 schema:issueNumber 5
    107 rdf:type schema:PublicationIssue
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Interdisciplinary Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1357547 schema:issn 0884-2914
    115 2044-5326
    116 schema:name Journal of Materials Research
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.010411052647.05 schema:affiliation grid-institutes:grid.24827.3b
    120 schema:familyName Lakshmikantha
    121 schema:givenName M.G.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411052647.05
    123 rdf:type schema:Person
    124 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.24827.3b
    125 schema:familyName Sekhar
    126 schema:givenName J.A.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
    128 rdf:type schema:Person
    129 sg:person.07613472247.18 schema:affiliation grid-institutes:grid.24827.3b
    130 schema:familyName Subramanian
    131 schema:givenName V.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07613472247.18
    133 rdf:type schema:Person
    134 sg:pub.10.1007/bf00585421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021224372
    135 https://doi.org/10.1007/bf00585421
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf00742950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009528189
    138 https://doi.org/10.1007/bf00742950
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf00756241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029666983
    141 https://doi.org/10.1007/bf00756241
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf00784949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183089
    144 https://doi.org/10.1007/bf00784949
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf00785326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046839018
    147 https://doi.org/10.1007/bf00785326
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf00789716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032847285
    150 https://doi.org/10.1007/bf00789716
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf01352204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018732043
    153 https://doi.org/10.1007/bf01352204
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bf02656631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032668767
    156 https://doi.org/10.1007/bf02656631
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bf02660847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117684
    159 https://doi.org/10.1007/bf02660847
    160 rdf:type schema:CreativeWork
    161 grid-institutes:grid.24827.3b schema:alternateName Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
    162 schema:name Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...