Mechanistic studies in combustion synthesis of Ni3Al and Ni3Al-matrix composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-05

AUTHORS

Jean-Pascal Lebrat, Arvind Varma, Paul J. McGinn

ABSTRACT

Nickel aluminides exhibit limited ductility and toughness at room temperature. One way to improve these characteristics is by adding ceramic reinforcements to the matrix. In this paper, we have studied the combustion synthesis of Ni 3 Al and Ni 3 Al-matrix composites, using the self-propagating high-temperature synthesis (SHS) mode. First, studies of the Ni 3 Al synthesis were carried out by quenching the reaction during its progress, which revealed the mechanism of the synthesis. The influence of Al 2 O 3 and SiC whiskers or particulates, and B 4 C particulates added to the reaction mixture prior to combustion synthesis, was investigated next. It was found that, in general, reinforcements are heat sinks and limit the propagation of the reaction. Also, whiskers impede the flow of formed liquid to a larger extent than do particulates. Al 2 O 3 is inert and matrices reinforced with up to 2 wt. % Al 2 O 3 are composed essentially of Ni 3 Al grains. However, both B 4 C and SiC react with the Ni-Al matrix and lead to complex phases. In particular, B 4 C readily forms a Ni-Al-B liquid phase and disrupts dramatically the progress of the Ni 3 Al matrix synthesis. More... »

PAGES

1184-1192

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/jmr.1994.1184

DOI

http://dx.doi.org/10.1557/jmr.1994.1184

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026717694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebrat", 
        "givenName": "Jean-Pascal", 
        "id": "sg:person.013524042652.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524042652.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varma", 
        "givenName": "Arvind", 
        "id": "sg:person.015311351425.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311351425.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Materials Science and Engineering, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Center for Materials Science and Engineering, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McGinn", 
        "givenName": "Paul J.", 
        "id": "sg:person.013735066426.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013735066426.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1990.2177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047726518", 
          "https://doi.org/10.1557/jmr.1990.2177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03258828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001750147", 
          "https://doi.org/10.1007/bf03258828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1991.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020608989", 
          "https://doi.org/10.1557/jmr.1991.0355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00740533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002233989", 
          "https://doi.org/10.1007/bf00740533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1990.2706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044812551", 
          "https://doi.org/10.1557/jmr.1990.2706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00742281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045892875", 
          "https://doi.org/10.1007/bf00742281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03258543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014775245", 
          "https://doi.org/10.1007/bf03258543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02666681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005748463", 
          "https://doi.org/10.1007/bf02666681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1990.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775045", 
          "https://doi.org/10.1557/jmr.1990.1985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02660854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045380740", 
          "https://doi.org/10.1007/bf02660854"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-05", 
    "datePublishedReg": "1994-05-01", 
    "description": " Nickel aluminides exhibit limited ductility and toughness at room temperature. One way to improve these characteristics is by adding ceramic reinforcements to the matrix. In this paper, we have studied the combustion synthesis of Ni 3 Al and Ni 3 Al-matrix composites, using the self-propagating high-temperature synthesis (SHS) mode. First, studies of the Ni 3 Al synthesis were carried out by quenching the reaction during its progress, which revealed the mechanism of the synthesis. The influence of Al 2 O 3 and SiC whiskers or particulates, and B 4 C particulates added to the reaction mixture prior to combustion synthesis, was investigated next. It was found that, in general, reinforcements are heat sinks and limit the propagation of the reaction. Also, whiskers impede the flow of formed liquid to a larger extent than do particulates. Al 2 O 3 is inert and matrices reinforced with up to 2 wt. % Al 2 O 3 are composed essentially of Ni 3 Al grains. However, both B 4 C and SiC react with the Ni-Al matrix and lead to complex phases. In particular, B 4 C readily forms a Ni-Al-B liquid phase and disrupts dramatically the progress of the Ni 3 Al matrix synthesis. ", 
    "genre": "article", 
    "id": "sg:pub.10.1557/jmr.1994.1184", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357547", 
        "issn": [
          "0884-2914", 
          "2044-5326"
        ], 
        "name": "Journal of Materials Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Al 2 O 3", 
      "combustion synthesis", 
      "self-propagating high-temperature synthesis (SHS) mode", 
      "Al matrix composites", 
      "Ni3Al matrix composites", 
      "Ni\u2013Al matrix", 
      "ceramic reinforcement", 
      "Ni 3 Al", 
      "SiC react", 
      "limited ductility", 
      "SiC whiskers", 
      "heat sink", 
      "Al grains", 
      "Ni-Al", 
      "liquid phase", 
      "composites", 
      "room temperature", 
      "synthesis mode", 
      "particulates", 
      "whiskers", 
      "reinforcement", 
      "ductility", 
      "toughness", 
      "matrix", 
      "complex phase", 
      "Ni3Al", 
      "phase", 
      "liquid", 
      "temperature", 
      "flow", 
      "propagation", 
      "wt", 
      "grains", 
      "mode", 
      "sink", 
      "mixture", 
      "large extent", 
      "characteristics", 
      "influence", 
      "al", 
      "reaction mixture", 
      "synthesis", 
      "reaction", 
      "progress", 
      "study", 
      "mechanism", 
      "way", 
      "matrix synthesis", 
      "reacts", 
      "extent", 
      "mechanistic studies", 
      "disrupts", 
      "paper"
    ], 
    "name": "Mechanistic studies in combustion synthesis of Ni3Al and Ni3Al-matrix composites", 
    "pagination": "1184-1192", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026717694"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/jmr.1994.1184"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/jmr.1994.1184", 
      "https://app.dimensions.ai/details/publication/pub.1026717694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_220.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/jmr.1994.1184"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/jmr.1994.1184'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/jmr.1994.1184'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/jmr.1994.1184'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/jmr.1994.1184'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      89 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/jmr.1994.1184 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nf94b3d14cb8b4ac19d247c838ed0a347
4 schema:citation sg:pub.10.1007/bf00740533
5 sg:pub.10.1007/bf00742281
6 sg:pub.10.1007/bf02660854
7 sg:pub.10.1007/bf02666681
8 sg:pub.10.1007/bf03258543
9 sg:pub.10.1007/bf03258828
10 sg:pub.10.1557/jmr.1990.1985
11 sg:pub.10.1557/jmr.1990.2177
12 sg:pub.10.1557/jmr.1990.2706
13 sg:pub.10.1557/jmr.1991.0355
14 schema:datePublished 1994-05
15 schema:datePublishedReg 1994-05-01
16 schema:description Nickel aluminides exhibit limited ductility and toughness at room temperature. One way to improve these characteristics is by adding ceramic reinforcements to the matrix. In this paper, we have studied the combustion synthesis of Ni 3 Al and Ni 3 Al-matrix composites, using the self-propagating high-temperature synthesis (SHS) mode. First, studies of the Ni 3 Al synthesis were carried out by quenching the reaction during its progress, which revealed the mechanism of the synthesis. The influence of Al 2 O 3 and SiC whiskers or particulates, and B 4 C particulates added to the reaction mixture prior to combustion synthesis, was investigated next. It was found that, in general, reinforcements are heat sinks and limit the propagation of the reaction. Also, whiskers impede the flow of formed liquid to a larger extent than do particulates. Al 2 O 3 is inert and matrices reinforced with up to 2 wt. % Al 2 O 3 are composed essentially of Ni 3 Al grains. However, both B 4 C and SiC react with the Ni-Al matrix and lead to complex phases. In particular, B 4 C readily forms a Ni-Al-B liquid phase and disrupts dramatically the progress of the Ni 3 Al matrix synthesis.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2eb41f44fbca4d158aedb13f9ae199ad
21 Nbe9eda2b280749cc899e35306270b880
22 sg:journal.1357547
23 schema:keywords Al 2 O 3
24 Al grains
25 Al matrix composites
26 Ni 3 Al
27 Ni-Al
28 Ni3Al
29 Ni3Al matrix composites
30 Ni–Al matrix
31 SiC react
32 SiC whiskers
33 al
34 ceramic reinforcement
35 characteristics
36 combustion synthesis
37 complex phase
38 composites
39 disrupts
40 ductility
41 extent
42 flow
43 grains
44 heat sink
45 influence
46 large extent
47 limited ductility
48 liquid
49 liquid phase
50 matrix
51 matrix synthesis
52 mechanism
53 mechanistic studies
54 mixture
55 mode
56 paper
57 particulates
58 phase
59 progress
60 propagation
61 reaction
62 reaction mixture
63 reacts
64 reinforcement
65 room temperature
66 self-propagating high-temperature synthesis (SHS) mode
67 sink
68 study
69 synthesis
70 synthesis mode
71 temperature
72 toughness
73 way
74 whiskers
75 wt
76 schema:name Mechanistic studies in combustion synthesis of Ni3Al and Ni3Al-matrix composites
77 schema:pagination 1184-1192
78 schema:productId Nab290cc92d1349cb908aade76ebef666
79 Ne1389e01eb3044719647877f729135a8
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026717694
81 https://doi.org/10.1557/jmr.1994.1184
82 schema:sdDatePublished 2022-05-20T07:19
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Na1feaeaa319d4673a450847d6d45655a
85 schema:url https://doi.org/10.1557/jmr.1994.1184
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N2eb41f44fbca4d158aedb13f9ae199ad schema:volumeNumber 9
90 rdf:type schema:PublicationVolume
91 N388223ca717040b6ab15b25472ae4212 rdf:first sg:person.015311351425.35
92 rdf:rest N4a9a9527268545cfa9af6dfdf1b99fbb
93 N4a9a9527268545cfa9af6dfdf1b99fbb rdf:first sg:person.013735066426.33
94 rdf:rest rdf:nil
95 Na1feaeaa319d4673a450847d6d45655a schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nab290cc92d1349cb908aade76ebef666 schema:name dimensions_id
98 schema:value pub.1026717694
99 rdf:type schema:PropertyValue
100 Nbe9eda2b280749cc899e35306270b880 schema:issueNumber 5
101 rdf:type schema:PublicationIssue
102 Ne1389e01eb3044719647877f729135a8 schema:name doi
103 schema:value 10.1557/jmr.1994.1184
104 rdf:type schema:PropertyValue
105 Nf94b3d14cb8b4ac19d247c838ed0a347 rdf:first sg:person.013524042652.77
106 rdf:rest N388223ca717040b6ab15b25472ae4212
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
111 schema:name Interdisciplinary Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1357547 schema:issn 0884-2914
114 2044-5326
115 schema:name Journal of Materials Research
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.013524042652.77 schema:affiliation grid-institutes:grid.131063.6
119 schema:familyName Lebrat
120 schema:givenName Jean-Pascal
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524042652.77
122 rdf:type schema:Person
123 sg:person.013735066426.33 schema:affiliation grid-institutes:grid.131063.6
124 schema:familyName McGinn
125 schema:givenName Paul J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013735066426.33
127 rdf:type schema:Person
128 sg:person.015311351425.35 schema:affiliation grid-institutes:grid.131063.6
129 schema:familyName Varma
130 schema:givenName Arvind
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311351425.35
132 rdf:type schema:Person
133 sg:pub.10.1007/bf00740533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002233989
134 https://doi.org/10.1007/bf00740533
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00742281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045892875
137 https://doi.org/10.1007/bf00742281
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf02660854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045380740
140 https://doi.org/10.1007/bf02660854
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf02666681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748463
143 https://doi.org/10.1007/bf02666681
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf03258543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014775245
146 https://doi.org/10.1007/bf03258543
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf03258828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001750147
149 https://doi.org/10.1007/bf03258828
150 rdf:type schema:CreativeWork
151 sg:pub.10.1557/jmr.1990.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775045
152 https://doi.org/10.1557/jmr.1990.1985
153 rdf:type schema:CreativeWork
154 sg:pub.10.1557/jmr.1990.2177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047726518
155 https://doi.org/10.1557/jmr.1990.2177
156 rdf:type schema:CreativeWork
157 sg:pub.10.1557/jmr.1990.2706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044812551
158 https://doi.org/10.1557/jmr.1990.2706
159 rdf:type schema:CreativeWork
160 sg:pub.10.1557/jmr.1991.0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020608989
161 https://doi.org/10.1557/jmr.1991.0355
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.131063.6 schema:alternateName Center for Materials Science and Engineering, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
164 Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
165 schema:name Center for Materials Science and Engineering, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
166 Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...