Solution-Processed Cubic GaN for Potential Lighting Applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-15

AUTHORS

Aakash Kumar Jain, Sushma Yadav, Meenal Mehra, Sameer Sapra, Madhusudan Singh

ABSTRACT

Cubic gallium nitride (GaN) is a wide bandgap semiconductor that exhibits a high crystallographic symmetry resulting in a lower inbuilt polarization which is useful for more efficient phosphor-free green light-emitting diodes. It has been grown using molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), which produce highly ordered thin films on compatible substrates. In this work, we report the chemical synthesis of GaN using chemical metathesis reaction in diethyl ether with lithium nitride and anhydrous gallium chloride as precursors, inside a nitrogen glove box at the room temperature. The resulting product was subsequently washed to remove lithium chloride and dried before vacuum annealing in a furnace at 850°C. Powder X-ray diffraction (XRD) scans of the as-prepared and annealed product reveal a mixed phase of GaN along with Ga2O3. Energy dispersive X-ray spectroscopy (EDAX) measurements show a nitrogen-poor product, which correlates well with the nearly black color of the powder. Diffuse reflectance spectroscopy (DRS) measurements were carried out with the obtained product on a barium sulfate substrate in a Perkin-Elmer Lambda 1050-UV-Vis-NIR spectrophotometer showing a strong absorbance below 400 nm. The energy band gap is bounded by values extracted from the Tauc plot and DRS measurements in the range of 3.2-3.5 eV, which is in good agreement with the known excitonic bandgap of cubic GaN (∼ 3.3 eV). Initial photoluminescence (PL) measurements using a Perkin-Elmer LS-55 spectrophotometer with an excitation wavelength of 310 nm reveal a weak emission centered around 440 nm corresponding to the known defect centers (D0X) in GaN. Further development of this process to form inks is expected to provide an alternate pathway to producing flexible phosphor-free lighting devices. More... »

PAGES

567-574

Identifiers

URI

http://scigraph.springernature.com/pub.10.1557/adv.2019.105

DOI

http://dx.doi.org/10.1557/adv.2019.105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112171011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Aakash Kumar", 
        "id": "sg:person.07361641572.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07361641572.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical Chemistry and Electrochemistry, Leibnitz University of Hannover, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, .", 
            "Institute of Physical Chemistry and Electrochemistry, Leibnitz University of Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadav", 
        "givenName": "Sushma", 
        "id": "sg:person.01162666263.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162666263.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Momentive Performance Materials India Pvt. Ltd, ., Bengaluru, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India", 
            "Momentive Performance Materials India Pvt. Ltd, ., Bengaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehra", 
        "givenName": "Meenal", 
        "id": "sg:person.015017013164.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015017013164.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, .", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, ."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sapra", 
        "givenName": "Sameer", 
        "id": "sg:person.01307614665.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307614665.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Madhusudan", 
        "id": "sg:person.015177332255.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177332255.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/proc-1197-d04-23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067908972", 
          "https://doi.org/10.1557/proc-1197-d04-23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004815546", 
          "https://doi.org/10.1038/srep10748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-007-1562-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043375707", 
          "https://doi.org/10.1007/s10853-007-1562-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028841316", 
          "https://doi.org/10.1038/srep24448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-693-i11.38.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067952564", 
          "https://doi.org/10.1557/proc-693-i11.38.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-016-4435-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008205616", 
          "https://doi.org/10.1007/s11664-016-4435-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-798-y7.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067957538", 
          "https://doi.org/10.1557/proc-798-y7.9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041307540", 
          "https://doi.org/10.1038/srep09373"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-15", 
    "datePublishedReg": "2019-02-15", 
    "description": "Cubic gallium nitride (GaN) is a wide bandgap semiconductor that exhibits a high crystallographic symmetry resulting in a lower inbuilt polarization which is useful for more efficient phosphor-free green light-emitting diodes. It has been grown using molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), which produce highly ordered thin films on compatible substrates. In this work, we report the chemical synthesis of GaN using chemical metathesis reaction in diethyl ether with lithium nitride and anhydrous gallium chloride as precursors, inside a nitrogen glove box at the room temperature. The resulting product was subsequently washed to remove lithium chloride and dried before vacuum annealing in a furnace at 850\u00b0C. Powder X-ray diffraction (XRD) scans of the as-prepared and annealed product reveal a mixed phase of GaN along with Ga2O3. Energy dispersive X-ray spectroscopy (EDAX) measurements show a nitrogen-poor product, which correlates well with the nearly black color of the powder. Diffuse reflectance spectroscopy (DRS) measurements were carried out with the obtained product on a barium sulfate substrate in a Perkin-Elmer Lambda 1050-UV-Vis-NIR spectrophotometer showing a strong absorbance below 400 nm. The energy band gap is bounded by values extracted from the Tauc plot and DRS measurements in the range of 3.2-3.5 eV, which is in good agreement with the known excitonic bandgap of cubic GaN (\u223c 3.3 eV). Initial photoluminescence (PL) measurements using a Perkin-Elmer LS-55 spectrophotometer with an excitation wavelength of 310 nm reveal a weak emission centered around 440 nm corresponding to the known defect centers (D0X) in GaN. Further development of this process to form inks is expected to provide an alternate pathway to producing flexible phosphor-free lighting devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1557/adv.2019.105", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297379", 
        "issn": [
          "2731-5894", 
          "2059-8521"
        ], 
        "name": "MRS Advances", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "metal-organic chemical vapor deposition", 
      "molecular beam epitaxy", 
      "spectroscopy measurements", 
      "energy dispersive X-ray spectroscopy measurements", 
      "chemical metathesis reaction", 
      "nitrogen glove box", 
      "Powder X-ray diffraction (XRD) scans", 
      "diffuse reflectance spectroscopy measurements", 
      "X-ray spectroscopy measurements", 
      "Perkin-Elmer Lambda", 
      "cubic GaN", 
      "green light-emitting diodes", 
      "reflectance spectroscopy measurements", 
      "high crystallographic symmetry", 
      "chemical synthesis", 
      "wide bandgap semiconductors", 
      "metathesis reaction", 
      "chemical vapor deposition", 
      "energy band gap", 
      "potential lighting applications", 
      "DRS measurements", 
      "lithium nitride", 
      "strong absorbance", 
      "light-emitting diodes", 
      "annealed products", 
      "Tauc plot", 
      "diethyl ether", 
      "cubic gallium nitride", 
      "X-ray diffraction scans", 
      "weak emission", 
      "vapor deposition", 
      "gallium nitride", 
      "vacuum annealing", 
      "glove box", 
      "gallium chloride", 
      "bandgap semiconductors", 
      "thin films", 
      "band gap", 
      "excitation wavelength", 
      "lighting applications", 
      "mixed phase", 
      "crystallographic symmetry", 
      "compatible substrates", 
      "lighting devices", 
      "beam epitaxy", 
      "sulfate substrate", 
      "Vis-NIR", 
      "GaN", 
      "room temperature", 
      "photoluminescence measurements", 
      "nitride", 
      "diffraction scans", 
      "chloride", 
      "good agreement", 
      "lithium chloride", 
      "black color", 
      "products", 
      "excitonic bandgap", 
      "substrate", 
      "defect centers", 
      "ether", 
      "synthesis", 
      "furnace", 
      "measurements", 
      "ink", 
      "absorbance", 
      "reaction", 
      "powder", 
      "annealing", 
      "precursors", 
      "epitaxy", 
      "semiconductors", 
      "diodes", 
      "films", 
      "Ga2O3", 
      "bandgap", 
      "spectrophotometer", 
      "further development", 
      "GaN.", 
      "eV", 
      "devices", 
      "deposition", 
      "temperature", 
      "emission", 
      "wavelength", 
      "applications", 
      "phase", 
      "polarization", 
      "range", 
      "agreement", 
      "process", 
      "symmetry", 
      "work", 
      "alternate pathway", 
      "color", 
      "gap", 
      "plots", 
      "values", 
      "box", 
      "pathway", 
      "center", 
      "development", 
      "lambda", 
      "scans"
    ], 
    "name": "Solution-Processed Cubic GaN for Potential Lighting Applications", 
    "pagination": "567-574", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112171011"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1557/adv.2019.105"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1557/adv.2019.105", 
      "https://app.dimensions.ai/details/publication/pub.1112171011"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1557/adv.2019.105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1557/adv.2019.105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1557/adv.2019.105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1557/adv.2019.105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1557/adv.2019.105'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      138 URIs      120 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1557/adv.2019.105 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Na0765c0dbcb34045b69b30956b987c77
6 schema:citation sg:pub.10.1007/s10853-007-1562-5
7 sg:pub.10.1007/s11664-016-4435-3
8 sg:pub.10.1038/srep09373
9 sg:pub.10.1038/srep10748
10 sg:pub.10.1038/srep24448
11 sg:pub.10.1557/proc-1197-d04-23
12 sg:pub.10.1557/proc-693-i11.38.1
13 sg:pub.10.1557/proc-798-y7.9
14 schema:datePublished 2019-02-15
15 schema:datePublishedReg 2019-02-15
16 schema:description Cubic gallium nitride (GaN) is a wide bandgap semiconductor that exhibits a high crystallographic symmetry resulting in a lower inbuilt polarization which is useful for more efficient phosphor-free green light-emitting diodes. It has been grown using molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), which produce highly ordered thin films on compatible substrates. In this work, we report the chemical synthesis of GaN using chemical metathesis reaction in diethyl ether with lithium nitride and anhydrous gallium chloride as precursors, inside a nitrogen glove box at the room temperature. The resulting product was subsequently washed to remove lithium chloride and dried before vacuum annealing in a furnace at 850°C. Powder X-ray diffraction (XRD) scans of the as-prepared and annealed product reveal a mixed phase of GaN along with Ga2O3. Energy dispersive X-ray spectroscopy (EDAX) measurements show a nitrogen-poor product, which correlates well with the nearly black color of the powder. Diffuse reflectance spectroscopy (DRS) measurements were carried out with the obtained product on a barium sulfate substrate in a Perkin-Elmer Lambda 1050-UV-Vis-NIR spectrophotometer showing a strong absorbance below 400 nm. The energy band gap is bounded by values extracted from the Tauc plot and DRS measurements in the range of 3.2-3.5 eV, which is in good agreement with the known excitonic bandgap of cubic GaN (∼ 3.3 eV). Initial photoluminescence (PL) measurements using a Perkin-Elmer LS-55 spectrophotometer with an excitation wavelength of 310 nm reveal a weak emission centered around 440 nm corresponding to the known defect centers (D0X) in GaN. Further development of this process to form inks is expected to provide an alternate pathway to producing flexible phosphor-free lighting devices.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf Ncc43fbb3f84f4766a200ce633fadb353
20 Ne88a8e1f842f447bacd82e2ca36f9e44
21 sg:journal.1297379
22 schema:keywords DRS measurements
23 Ga2O3
24 GaN
25 GaN.
26 Perkin-Elmer Lambda
27 Powder X-ray diffraction (XRD) scans
28 Tauc plot
29 Vis-NIR
30 X-ray diffraction scans
31 X-ray spectroscopy measurements
32 absorbance
33 agreement
34 alternate pathway
35 annealed products
36 annealing
37 applications
38 band gap
39 bandgap
40 bandgap semiconductors
41 beam epitaxy
42 black color
43 box
44 center
45 chemical metathesis reaction
46 chemical synthesis
47 chemical vapor deposition
48 chloride
49 color
50 compatible substrates
51 crystallographic symmetry
52 cubic GaN
53 cubic gallium nitride
54 defect centers
55 deposition
56 development
57 devices
58 diethyl ether
59 diffraction scans
60 diffuse reflectance spectroscopy measurements
61 diodes
62 eV
63 emission
64 energy band gap
65 energy dispersive X-ray spectroscopy measurements
66 epitaxy
67 ether
68 excitation wavelength
69 excitonic bandgap
70 films
71 furnace
72 further development
73 gallium chloride
74 gallium nitride
75 gap
76 glove box
77 good agreement
78 green light-emitting diodes
79 high crystallographic symmetry
80 ink
81 lambda
82 light-emitting diodes
83 lighting applications
84 lighting devices
85 lithium chloride
86 lithium nitride
87 measurements
88 metal-organic chemical vapor deposition
89 metathesis reaction
90 mixed phase
91 molecular beam epitaxy
92 nitride
93 nitrogen glove box
94 pathway
95 phase
96 photoluminescence measurements
97 plots
98 polarization
99 potential lighting applications
100 powder
101 precursors
102 process
103 products
104 range
105 reaction
106 reflectance spectroscopy measurements
107 room temperature
108 scans
109 semiconductors
110 spectrophotometer
111 spectroscopy measurements
112 strong absorbance
113 substrate
114 sulfate substrate
115 symmetry
116 synthesis
117 temperature
118 thin films
119 vacuum annealing
120 values
121 vapor deposition
122 wavelength
123 weak emission
124 wide bandgap semiconductors
125 work
126 schema:name Solution-Processed Cubic GaN for Potential Lighting Applications
127 schema:pagination 567-574
128 schema:productId N40e890622bfc4bd0b2a0bef5aade207d
129 N912b9d8efc7e42f7ad50e2d978f54dd0
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112171011
131 https://doi.org/10.1557/adv.2019.105
132 schema:sdDatePublished 2022-12-01T06:38
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher Nf1265d3982534b988fa70dda924aa927
135 schema:url https://doi.org/10.1557/adv.2019.105
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N2781d0750321462e88c54608d37a3284 rdf:first sg:person.015177332255.34
140 rdf:rest rdf:nil
141 N40e890622bfc4bd0b2a0bef5aade207d schema:name doi
142 schema:value 10.1557/adv.2019.105
143 rdf:type schema:PropertyValue
144 N4996f1fe9a3d434cb6e4802448579139 rdf:first sg:person.01307614665.97
145 rdf:rest N2781d0750321462e88c54608d37a3284
146 N7b716fbecafa4361ac073f458bbc661d rdf:first sg:person.01162666263.71
147 rdf:rest Nc4538a21337443f19aaeaceda8481ae8
148 N912b9d8efc7e42f7ad50e2d978f54dd0 schema:name dimensions_id
149 schema:value pub.1112171011
150 rdf:type schema:PropertyValue
151 Na0765c0dbcb34045b69b30956b987c77 rdf:first sg:person.07361641572.47
152 rdf:rest N7b716fbecafa4361ac073f458bbc661d
153 Nc4538a21337443f19aaeaceda8481ae8 rdf:first sg:person.015017013164.93
154 rdf:rest N4996f1fe9a3d434cb6e4802448579139
155 Ncc43fbb3f84f4766a200ce633fadb353 schema:volumeNumber 4
156 rdf:type schema:PublicationVolume
157 Ne88a8e1f842f447bacd82e2ca36f9e44 schema:issueNumber 9
158 rdf:type schema:PublicationIssue
159 Nf1265d3982534b988fa70dda924aa927 schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
162 schema:name Chemical Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
165 schema:name Physical Chemistry (incl. Structural)
166 rdf:type schema:DefinedTerm
167 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
168 schema:name Engineering
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
171 schema:name Materials Engineering
172 rdf:type schema:DefinedTerm
173 sg:journal.1297379 schema:issn 2059-8521
174 2731-5894
175 schema:name MRS Advances
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01162666263.71 schema:affiliation grid-institutes:None
179 schema:familyName Yadav
180 schema:givenName Sushma
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162666263.71
182 rdf:type schema:Person
183 sg:person.01307614665.97 schema:affiliation grid-institutes:grid.417967.a
184 schema:familyName Sapra
185 schema:givenName Sameer
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307614665.97
187 rdf:type schema:Person
188 sg:person.015017013164.93 schema:affiliation grid-institutes:None
189 schema:familyName Mehra
190 schema:givenName Meenal
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015017013164.93
192 rdf:type schema:Person
193 sg:person.015177332255.34 schema:affiliation grid-institutes:grid.417967.a
194 schema:familyName Singh
195 schema:givenName Madhusudan
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177332255.34
197 rdf:type schema:Person
198 sg:person.07361641572.47 schema:affiliation grid-institutes:grid.417967.a
199 schema:familyName Jain
200 schema:givenName Aakash Kumar
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07361641572.47
202 rdf:type schema:Person
203 sg:pub.10.1007/s10853-007-1562-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043375707
204 https://doi.org/10.1007/s10853-007-1562-5
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s11664-016-4435-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008205616
207 https://doi.org/10.1007/s11664-016-4435-3
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/srep09373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041307540
210 https://doi.org/10.1038/srep09373
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/srep10748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004815546
213 https://doi.org/10.1038/srep10748
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/srep24448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028841316
216 https://doi.org/10.1038/srep24448
217 rdf:type schema:CreativeWork
218 sg:pub.10.1557/proc-1197-d04-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067908972
219 https://doi.org/10.1557/proc-1197-d04-23
220 rdf:type schema:CreativeWork
221 sg:pub.10.1557/proc-693-i11.38.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067952564
222 https://doi.org/10.1557/proc-693-i11.38.1
223 rdf:type schema:CreativeWork
224 sg:pub.10.1557/proc-798-y7.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067957538
225 https://doi.org/10.1557/proc-798-y7.9
226 rdf:type schema:CreativeWork
227 grid-institutes:None schema:alternateName Institute of Physical Chemistry and Electrochemistry, Leibnitz University of Hannover, Germany
228 Momentive Performance Materials India Pvt. Ltd, ., Bengaluru, India
229 schema:name Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, .
230 Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
231 Institute of Physical Chemistry and Electrochemistry, Leibnitz University of Hannover, Germany
232 Momentive Performance Materials India Pvt. Ltd, ., Bengaluru, India
233 rdf:type schema:Organization
234 grid-institutes:grid.417967.a schema:alternateName Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, .
235 Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
236 schema:name Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, .
237 Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...