Peroxisome biogenesis in the yeast Yarrowia lipolytica View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

Vladimir I. Titorenko, Jennifer J. Smith, Rachel K. Szilard, Richard A. Rachubinski

ABSTRACT

Extensive perexisome proliferation during growth on oleic acid, combined with the availability of excellent genetic tools, makes the dimorphic yeast, Yarrowia lipolytica, a powerful model system to study the molecular mechanisms involved in peroxisome biogenesis. A combined genetic, biochemical, and morphological approach has revealed that the endoplasmic reticulum (ER) plays an essential role in the assembly of functional peroxisomes in this yeast. The trafficking of some membrane proteins to the peroxisomes occurs via the ER, results in their glyco-sylation in the ER lumen, does not involve transit through the Golgi, and requires the products of the SEC238, SRP54, PEX1, and PEX6 genes. The authors' data suggest a model for protein import into peroxisomes via two subpopulations of ER-derived vesicles that are distinct from secretory vesicles. A kinetic analysis of the trafficking of peroxisomal proteins in vivo has demonstrated that membrane and matrix proteins are initially targeted to multiple vesicular precursors that represent intermediates in the assembly pathway of peroxisomes. The authors have also recently identified a novel cytosolic chaperone, Pex20p, that assists in the oligomerization of thiolase in the cytosol and promotes its targeting to the peroxisome. These data provide the first evidence that a chaperone-assisted folding and oligomerization of thiolase in the cytosol is required for the import of this protein into the peroxisomal matrix. More... »

PAGES

21-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/cbb:32:1-3:21

DOI

http://dx.doi.org/10.1385/cbb:32:1-3:21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047867434

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11330048


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungal Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungi", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peroxisomes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titorenko", 
        "givenName": "Vladimir I.", 
        "id": "sg:person.01237376277.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237376277.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Jennifer J.", 
        "id": "sg:person.01231363703.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231363703.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szilard", 
        "givenName": "Rachel K.", 
        "id": "sg:person.01330057366.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330057366.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rachubinski", 
        "givenName": "Richard A.", 
        "id": "sg:person.01212415532.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212415532.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "Extensive perexisome proliferation during growth on oleic acid, combined with the availability of excellent genetic tools, makes the dimorphic yeast, Yarrowia lipolytica, a powerful model system to study the molecular mechanisms involved in peroxisome biogenesis. A combined genetic, biochemical, and morphological approach has revealed that the endoplasmic reticulum (ER) plays an essential role in the assembly of functional peroxisomes in this yeast. The trafficking of some membrane proteins to the peroxisomes occurs via the ER, results in their glyco-sylation in the ER lumen, does not involve transit through the Golgi, and requires the products of the SEC238, SRP54, PEX1, and PEX6 genes. The authors' data suggest a model for protein import into peroxisomes via two subpopulations of ER-derived vesicles that are distinct from secretory vesicles. A kinetic analysis of the trafficking of peroxisomal proteins in vivo has demonstrated that membrane and matrix proteins are initially targeted to multiple vesicular precursors that represent intermediates in the assembly pathway of peroxisomes. The authors have also recently identified a novel cytosolic chaperone, Pex20p, that assists in the oligomerization of thiolase in the cytosol and promotes its targeting to the peroxisome. These data provide the first evidence that a chaperone-assisted folding and oligomerization of thiolase in the cytosol is required for the import of this protein into the peroxisomal matrix.", 
    "genre": "article", 
    "id": "sg:pub.10.1385/cbb:32:1-3:21", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1090910", 
        "issn": [
          "1085-9195", 
          "1559-0283"
        ], 
        "name": "Cell Biochemistry and Biophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "endoplasmic reticulum", 
      "peroxisome biogenesis", 
      "chaperone-assisted folding", 
      "excellent genetic tools", 
      "powerful model system", 
      "protein import", 
      "cytosolic chaperones", 
      "genetic tools", 
      "peroxisomal proteins", 
      "peroxisomal matrix", 
      "ER lumen", 
      "membrane proteins", 
      "assembly pathway", 
      "dimorphic yeast", 
      "secretory vesicles", 
      "Combined Genetic", 
      "functional peroxisomes", 
      "yeast Yarrowia", 
      "molecular mechanisms", 
      "PEX6 gene", 
      "matrix proteins", 
      "Yarrowia lipolytica", 
      "peroxisomes", 
      "protein", 
      "biogenesis", 
      "essential role", 
      "morphological approach", 
      "yeast", 
      "model system", 
      "thiolase", 
      "trafficking", 
      "cytosol", 
      "first evidence", 
      "oligomerization", 
      "vesicles", 
      "Pex20p", 
      "SRP54", 
      "chaperones", 
      "PEX1", 
      "Golgi", 
      "import", 
      "kinetic analysis", 
      "genes", 
      "genetics", 
      "Yarrowia", 
      "folding", 
      "lipolytica", 
      "reticulum", 
      "pathway", 
      "targeting", 
      "proliferation", 
      "membrane", 
      "oleic acid", 
      "assembly", 
      "vivo", 
      "growth", 
      "subpopulations", 
      "acid", 
      "mechanism", 
      "intermediates", 
      "role", 
      "availability", 
      "lumen", 
      "precursors", 
      "evidence", 
      "data", 
      "analysis", 
      "products", 
      "tool", 
      "authors' data", 
      "transit", 
      "matrix", 
      "assists", 
      "system", 
      "approach", 
      "model", 
      "authors"
    ], 
    "name": "Peroxisome biogenesis in the yeast Yarrowia lipolytica", 
    "pagination": "21-26", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047867434"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/cbb:32:1-3:21"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11330048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1385/cbb:32:1-3:21", 
      "https://app.dimensions.ai/details/publication/pub.1047867434"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_310.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1385/cbb:32:1-3:21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/cbb:32:1-3:21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/cbb:32:1-3:21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/cbb:32:1-3:21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/cbb:32:1-3:21'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      20 PREDICATES      107 URIs      99 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/cbb:32:1-3:21 schema:about N27447e82dc404edf98330027760e8edf
2 N91a2c98e7006413482a761f71e1e183a
3 N9e4ed9ece48e4ee595af8c204a49b5e2
4 Nc101ddf137b14106ae92d8b0ddc78f37
5 anzsrc-for:06
6 anzsrc-for:0601
7 schema:author N3da4ccd8ed1e43ceb351d1f19528a80b
8 schema:datePublished 2000-03
9 schema:datePublishedReg 2000-03-01
10 schema:description Extensive perexisome proliferation during growth on oleic acid, combined with the availability of excellent genetic tools, makes the dimorphic yeast, Yarrowia lipolytica, a powerful model system to study the molecular mechanisms involved in peroxisome biogenesis. A combined genetic, biochemical, and morphological approach has revealed that the endoplasmic reticulum (ER) plays an essential role in the assembly of functional peroxisomes in this yeast. The trafficking of some membrane proteins to the peroxisomes occurs via the ER, results in their glyco-sylation in the ER lumen, does not involve transit through the Golgi, and requires the products of the SEC238, SRP54, PEX1, and PEX6 genes. The authors' data suggest a model for protein import into peroxisomes via two subpopulations of ER-derived vesicles that are distinct from secretory vesicles. A kinetic analysis of the trafficking of peroxisomal proteins in vivo has demonstrated that membrane and matrix proteins are initially targeted to multiple vesicular precursors that represent intermediates in the assembly pathway of peroxisomes. The authors have also recently identified a novel cytosolic chaperone, Pex20p, that assists in the oligomerization of thiolase in the cytosol and promotes its targeting to the peroxisome. These data provide the first evidence that a chaperone-assisted folding and oligomerization of thiolase in the cytosol is required for the import of this protein into the peroxisomal matrix.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf Nc677188d2ca44aa88b2dff38636a76ca
14 Ndee23f04375c4e4082ec3906ef1a0e59
15 sg:journal.1090910
16 schema:keywords Combined Genetic
17 ER lumen
18 Golgi
19 PEX1
20 PEX6 gene
21 Pex20p
22 SRP54
23 Yarrowia
24 Yarrowia lipolytica
25 acid
26 analysis
27 approach
28 assembly
29 assembly pathway
30 assists
31 authors
32 authors' data
33 availability
34 biogenesis
35 chaperone-assisted folding
36 chaperones
37 cytosol
38 cytosolic chaperones
39 data
40 dimorphic yeast
41 endoplasmic reticulum
42 essential role
43 evidence
44 excellent genetic tools
45 first evidence
46 folding
47 functional peroxisomes
48 genes
49 genetic tools
50 genetics
51 growth
52 import
53 intermediates
54 kinetic analysis
55 lipolytica
56 lumen
57 matrix
58 matrix proteins
59 mechanism
60 membrane
61 membrane proteins
62 model
63 model system
64 molecular mechanisms
65 morphological approach
66 oleic acid
67 oligomerization
68 pathway
69 peroxisomal matrix
70 peroxisomal proteins
71 peroxisome biogenesis
72 peroxisomes
73 powerful model system
74 precursors
75 products
76 proliferation
77 protein
78 protein import
79 reticulum
80 role
81 secretory vesicles
82 subpopulations
83 system
84 targeting
85 thiolase
86 tool
87 trafficking
88 transit
89 vesicles
90 vivo
91 yeast
92 yeast Yarrowia
93 schema:name Peroxisome biogenesis in the yeast Yarrowia lipolytica
94 schema:pagination 21-26
95 schema:productId N6acc72352d5b4873b65ef69628151bcd
96 N7c2f64a1df0b4419aef2920fb75f8473
97 Ne5deddcf41ba42669c50e910c7f880b8
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047867434
99 https://doi.org/10.1385/cbb:32:1-3:21
100 schema:sdDatePublished 2022-11-24T20:49
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N7245a4c0031942c0848b291cdbd25def
103 schema:url https://doi.org/10.1385/cbb:32:1-3:21
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N2540c8b6ee9a4517b394e7d6d46d5fb1 rdf:first sg:person.01212415532.62
108 rdf:rest rdf:nil
109 N27447e82dc404edf98330027760e8edf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Peroxisomes
111 rdf:type schema:DefinedTerm
112 N3da4ccd8ed1e43ceb351d1f19528a80b rdf:first sg:person.01237376277.18
113 rdf:rest N9424676965a44340815df7f02cb0a139
114 N6acc72352d5b4873b65ef69628151bcd schema:name dimensions_id
115 schema:value pub.1047867434
116 rdf:type schema:PropertyValue
117 N7245a4c0031942c0848b291cdbd25def schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N7c2f64a1df0b4419aef2920fb75f8473 schema:name doi
120 schema:value 10.1385/cbb:32:1-3:21
121 rdf:type schema:PropertyValue
122 N91a2c98e7006413482a761f71e1e183a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Fungi
124 rdf:type schema:DefinedTerm
125 N9424676965a44340815df7f02cb0a139 rdf:first sg:person.01231363703.95
126 rdf:rest Nffc1cacb23f94fa88190a609cc23150c
127 N9e4ed9ece48e4ee595af8c204a49b5e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Fungal Proteins
129 rdf:type schema:DefinedTerm
130 Nc101ddf137b14106ae92d8b0ddc78f37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gene Expression Regulation, Fungal
132 rdf:type schema:DefinedTerm
133 Nc677188d2ca44aa88b2dff38636a76ca schema:issueNumber 1-3
134 rdf:type schema:PublicationIssue
135 Ndee23f04375c4e4082ec3906ef1a0e59 schema:volumeNumber 32
136 rdf:type schema:PublicationVolume
137 Ne5deddcf41ba42669c50e910c7f880b8 schema:name pubmed_id
138 schema:value 11330048
139 rdf:type schema:PropertyValue
140 Nffc1cacb23f94fa88190a609cc23150c rdf:first sg:person.01330057366.96
141 rdf:rest N2540c8b6ee9a4517b394e7d6d46d5fb1
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biochemistry and Cell Biology
147 rdf:type schema:DefinedTerm
148 sg:journal.1090910 schema:issn 1085-9195
149 1559-0283
150 schema:name Cell Biochemistry and Biophysics
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01212415532.62 schema:affiliation grid-institutes:grid.17089.37
154 schema:familyName Rachubinski
155 schema:givenName Richard A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212415532.62
157 rdf:type schema:Person
158 sg:person.01231363703.95 schema:affiliation grid-institutes:grid.17089.37
159 schema:familyName Smith
160 schema:givenName Jennifer J.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231363703.95
162 rdf:type schema:Person
163 sg:person.01237376277.18 schema:affiliation grid-institutes:grid.17089.37
164 schema:familyName Titorenko
165 schema:givenName Vladimir I.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237376277.18
167 rdf:type schema:Person
168 sg:person.01330057366.96 schema:affiliation grid-institutes:grid.17089.37
169 schema:familyName Szilard
170 schema:givenName Rachel K.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330057366.96
172 rdf:type schema:Person
173 grid-institutes:grid.17089.37 schema:alternateName Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada
174 schema:name Department of Cell Biology, University of Alberta, Edmonton, T6G 2H7, Alberta, Canada
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...