Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-03

AUTHORS

James W. Lee, Laurens Mets, Elias Greenbaum

ABSTRACT

At elevated light intensities (greater than approximately 200 microE/[m2 x s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 microE/(m2 x s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 micromol/[h x mg of chl]) than that of the wild type, DES15 (95 micromol/[h x mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency. More... »

PAGES

37-48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/abab:98-100:1-9:37

DOI

http://dx.doi.org/10.1385/abab:98-100:1-9:37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006805554

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12018264


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorophyll", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorophyta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Physiological Phenomena", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Chemical Technology Division, Oak Ridge National Laboratory, 37831-6194, Oak Ridge, TN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "James W.", 
        "id": "sg:person.0713074357.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713074357.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 E. 57th Street, 60637, Chicago, IL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mets", 
        "givenName": "Laurens", 
        "id": "sg:person.01260421000.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260421000.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Chemical Technology Division, Oak Ridge National Laboratory, 37831-6194, Oak Ridge, TN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greenbaum", 
        "givenName": "Elias", 
        "id": "sg:person.0714621705.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714621705.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1008015224029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003009296", 
          "https://doi.org/10.1023/a:1008015224029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.6.1532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004854631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00084-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006554477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(92)81894-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006886265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007285701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(98)00296-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009937522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011327496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00003549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011952912", 
          "https://doi.org/10.1007/bf00003549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00080-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013916212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-8904(95)00340-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015022249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19960705)51:1<51::aid-bit6>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015906570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/kakoronbunshu.23.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019703513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.50.1.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530051591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024695498", 
          "https://doi.org/10.1007/s002530051591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(88)90504-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029992975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(88)90504-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029992975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(89)82654-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031554903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1656(95)00144-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031594469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.46.1.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033287370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00003954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034478198", 
          "https://doi.org/10.1007/bf00003954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pp.42.060191.001525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041664202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00083-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042087350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0922-338x(95)90613-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042143678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008076231267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042844175", 
          "https://doi.org/10.1023/a:1008076231267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2728(89)80202-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043493072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260470218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048843380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5329.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5400.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-03", 
    "datePublishedReg": "2002-03-01", 
    "description": "At elevated light intensities (greater than approximately 200 microE/[m2 x s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 microE/(m2 x s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 micromol/[h x mg of chl]) than that of the wild type, DES15 (95 micromol/[h x mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1385/abab:98-100:1-9:37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086169", 
        "issn": [
          "0273-2289", 
          "1559-0291"
        ], 
        "name": "Applied Biochemistry and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98-100"
      }
    ], 
    "name": "Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size", 
    "pagination": "37-48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "206ad74c3e32e79945e459f359a8bbad58bd9ac8ac646af62ebf43d634ed426e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12018264"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8208561"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/abab:98-100:1-9:37"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006805554"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1385/abab:98-100:1-9:37", 
      "https://app.dimensions.ai/details/publication/pub.1006805554"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1385/ABAB:98-100:1-9:37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/abab:98-100:1-9:37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/abab:98-100:1-9:37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/abab:98-100:1-9:37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/abab:98-100:1-9:37'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      66 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/abab:98-100:1-9:37 schema:about N58915731a92a4560a660b6c8cb754291
2 N5be590ca7e5b4cddbe4d66b24071f8e0
3 N7d63a6fc5b48445dba08d7b31bbf16d9
4 N9c5605d476f6444b9a6766deb53a05e9
5 Na1e1a3a6d2244ea38fe9327437d21b3e
6 Nac55a76434f44715bad5e5e0ccd92601
7 Nae9c670d7b2148068fc7574ca6f58d4e
8 Nbc0e05b6ebc84e639e618ff5407e1b19
9 Nd9a7f0a5aabb47cbbbe0f04251951ba2
10 anzsrc-for:06
11 anzsrc-for:0607
12 schema:author N96bbf510786f4d5eb8f6048b830ea6f8
13 schema:citation sg:pub.10.1007/bf00003549
14 sg:pub.10.1007/bf00003954
15 sg:pub.10.1007/s002530051591
16 sg:pub.10.1023/a:1008015224029
17 sg:pub.10.1023/a:1008076231267
18 https://doi.org/10.1002/(sici)1097-0290(19960705)51:1<51::aid-bit6>3.0.co;2-#
19 https://doi.org/10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m
20 https://doi.org/10.1002/bit.260470218
21 https://doi.org/10.1016/0168-1656(95)00144-1
22 https://doi.org/10.1016/0196-8904(95)00340-1
23 https://doi.org/10.1016/0378-1119(88)90504-5
24 https://doi.org/10.1016/0922-338x(95)90613-5
25 https://doi.org/10.1016/s0005-2728(89)80202-6
26 https://doi.org/10.1016/s0006-3495(89)82654-2
27 https://doi.org/10.1016/s0006-3495(92)81894-5
28 https://doi.org/10.1016/s0009-2509(98)00296-6
29 https://doi.org/10.1016/s0168-1656(99)00079-6
30 https://doi.org/10.1016/s0168-1656(99)00080-2
31 https://doi.org/10.1016/s0168-1656(99)00081-4
32 https://doi.org/10.1016/s0168-1656(99)00083-8
33 https://doi.org/10.1016/s0168-1656(99)00084-x
34 https://doi.org/10.1073/pnas.46.1.83
35 https://doi.org/10.1073/pnas.84.6.1532
36 https://doi.org/10.1104/pp.50.1.141
37 https://doi.org/10.1126/science.277.5329.1038
38 https://doi.org/10.1126/science.283.5400.310
39 https://doi.org/10.1146/annurev.pp.42.060191.001525
40 https://doi.org/10.1252/kakoronbunshu.23.331
41 schema:datePublished 2002-03
42 schema:datePublishedReg 2002-03-01
43 schema:description At elevated light intensities (greater than approximately 200 microE/[m2 x s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 microE/(m2 x s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 micromol/[h x mg of chl]) than that of the wild type, DES15 (95 micromol/[h x mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N38f1e72f614741adb6870c9b31ccc323
48 N919959b12e374207ad2c2f788ad300c8
49 sg:journal.1086169
50 schema:name Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size
51 schema:pagination 37-48
52 schema:productId N4473654fbdf04e95bd341055d3d1cb2e
53 N5b2607e3466f4c52bba9173c0da0ac32
54 N6117e3705a6840fa96875e7a2627a267
55 Nc93f76270afd46b99a611eebf5999940
56 Neb8966df69bd4b4eaac887a1196403e1
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006805554
58 https://doi.org/10.1385/abab:98-100:1-9:37
59 schema:sdDatePublished 2019-04-10T23:21
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N8ad1c4d86690464db631c8621670f004
62 schema:url http://link.springer.com/10.1385/ABAB:98-100:1-9:37
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N38f1e72f614741adb6870c9b31ccc323 schema:issueNumber 1-9
67 rdf:type schema:PublicationIssue
68 N4473654fbdf04e95bd341055d3d1cb2e schema:name doi
69 schema:value 10.1385/abab:98-100:1-9:37
70 rdf:type schema:PropertyValue
71 N531d508d863045d4ac5cb5489e4a2ecd rdf:first sg:person.0714621705.87
72 rdf:rest rdf:nil
73 N58915731a92a4560a660b6c8cb754291 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Chlamydomonas
75 rdf:type schema:DefinedTerm
76 N5b2607e3466f4c52bba9173c0da0ac32 schema:name dimensions_id
77 schema:value pub.1006805554
78 rdf:type schema:PropertyValue
79 N5be590ca7e5b4cddbe4d66b24071f8e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Animals
81 rdf:type schema:DefinedTerm
82 N6117e3705a6840fa96875e7a2627a267 schema:name readcube_id
83 schema:value 206ad74c3e32e79945e459f359a8bbad58bd9ac8ac646af62ebf43d634ed426e
84 rdf:type schema:PropertyValue
85 N7d63a6fc5b48445dba08d7b31bbf16d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Kinetics
87 rdf:type schema:DefinedTerm
88 N8ad1c4d86690464db631c8621670f004 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N919959b12e374207ad2c2f788ad300c8 schema:volumeNumber 98-100
91 rdf:type schema:PublicationVolume
92 N96bbf510786f4d5eb8f6048b830ea6f8 rdf:first sg:person.0713074357.07
93 rdf:rest Nc7cca566d73d4acba4efab028a7d7b4e
94 N9c5605d476f6444b9a6766deb53a05e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Plant Physiological Phenomena
96 rdf:type schema:DefinedTerm
97 Na1e1a3a6d2244ea38fe9327437d21b3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Light
99 rdf:type schema:DefinedTerm
100 Nac55a76434f44715bad5e5e0ccd92601 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Chlorophyll
102 rdf:type schema:DefinedTerm
103 Nae9c670d7b2148068fc7574ca6f58d4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Photosynthesis
105 rdf:type schema:DefinedTerm
106 Nbc0e05b6ebc84e639e618ff5407e1b19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Carbon Dioxide
108 rdf:type schema:DefinedTerm
109 Nc7cca566d73d4acba4efab028a7d7b4e rdf:first sg:person.01260421000.56
110 rdf:rest N531d508d863045d4ac5cb5489e4a2ecd
111 Nc93f76270afd46b99a611eebf5999940 schema:name nlm_unique_id
112 schema:value 8208561
113 rdf:type schema:PropertyValue
114 Nd9a7f0a5aabb47cbbbe0f04251951ba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Chlorophyta
116 rdf:type schema:DefinedTerm
117 Neb8966df69bd4b4eaac887a1196403e1 schema:name pubmed_id
118 schema:value 12018264
119 rdf:type schema:PropertyValue
120 Neef7693a6c0d40a6bf2687a601606880 schema:name Department of Molecular Genetics and Cell Biology, University of Chicago, 1103 E. 57th Street, 60637, Chicago, IL
121 rdf:type schema:Organization
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
126 schema:name Plant Biology
127 rdf:type schema:DefinedTerm
128 sg:journal.1086169 schema:issn 0273-2289
129 1559-0291
130 schema:name Applied Biochemistry and Biotechnology
131 rdf:type schema:Periodical
132 sg:person.01260421000.56 schema:affiliation Neef7693a6c0d40a6bf2687a601606880
133 schema:familyName Mets
134 schema:givenName Laurens
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260421000.56
136 rdf:type schema:Person
137 sg:person.0713074357.07 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
138 schema:familyName Lee
139 schema:givenName James W.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713074357.07
141 rdf:type schema:Person
142 sg:person.0714621705.87 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
143 schema:familyName Greenbaum
144 schema:givenName Elias
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714621705.87
146 rdf:type schema:Person
147 sg:pub.10.1007/bf00003549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011952912
148 https://doi.org/10.1007/bf00003549
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00003954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034478198
151 https://doi.org/10.1007/bf00003954
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s002530051591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024695498
154 https://doi.org/10.1007/s002530051591
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/a:1008015224029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003009296
157 https://doi.org/10.1023/a:1008015224029
158 rdf:type schema:CreativeWork
159 sg:pub.10.1023/a:1008076231267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042844175
160 https://doi.org/10.1023/a:1008076231267
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/(sici)1097-0290(19960705)51:1<51::aid-bit6>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255177
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1015906570
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/bit.260470218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048843380
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0168-1656(95)00144-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031594469
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0196-8904(95)00340-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015022249
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0378-1119(88)90504-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029992975
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0922-338x(95)90613-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042143678
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0005-2728(89)80202-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043493072
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0006-3495(89)82654-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031554903
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0006-3495(92)81894-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006886265
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0009-2509(98)00296-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009937522
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0168-1656(99)00079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007285701
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0168-1656(99)00080-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013916212
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0168-1656(99)00081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011327496
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0168-1656(99)00083-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042087350
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0168-1656(99)00084-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554477
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.46.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033287370
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.84.6.1532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004854631
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1104/pp.50.1.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020299120
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.277.5329.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557734
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.283.5400.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563830
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1146/annurev.pp.42.060191.001525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041664202
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1252/kakoronbunshu.23.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703513
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
209 schema:name Chemical Technology Division, Oak Ridge National Laboratory, 37831-6194, Oak Ridge, TN
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...