Quantitative Analysis of Proteomes and Subproteomes by Isotope-Coded Affinity Tag and Solid-Phase Glycoprotein Capture View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Eugene Yi , Hui Zhang , Kelly Cooke , Ruedi Aebersold , David R. Goodlett

ABSTRACT

Chemical probes for isolating specific subsets of a proteome in conjunction with mass spectrometry have had a profound influence on quantitative analysis of complex protein mixtures. Because of the dynamic range of protein abundance, comprehensive profiling of complex proteomes has been an exceedingly challenging analytical problem. However, selective isolation of a subset of proteins (i.e., a protein class) from a proteome via chemistries selective for moieties such as phosphates or sulfhydryls substantially reduces the sample complexity by one or two orders of magnitude and enriches a subclass of the proteome prior to mass spectrometric analysis (1). In this chapter, two commonly used chemical probes for selective isolation of cysteine-containing and N-linked carbohydrate-containing peptides for the quantitative analysis of a proteome are described (2–5). The first is based on stable isotope affinity tagging of the cysteine residues in a protein; i.e., the original isotope-coded affinity tag (ICAT) method. The second method uses specific chemical probes that selectively isolate N-glycosylated proteins (i.e., the glycopeptide capture method) and subsequently labels the amino groups with light (d0, contains no deuteriums) or heavy (d4, contains four deteriums) forms of succinic anhydride for quantitative measurement. More... »

PAGES

385-392

Book

TITLE

The Proteomics Protocols Handbook

ISBN

978-1-58829-343-5
978-1-59259-890-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/1-59259-890-0:385

DOI

http://dx.doi.org/10.1385/1-59259-890-0:385

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033274781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Eugene", 
        "id": "sg:person.01064603366.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064603366.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hui", 
        "id": "sg:person.012577025321.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577025321.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cooke", 
        "givenName": "Kelly", 
        "id": "sg:person.01147740343.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147740343.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aebersold", 
        "givenName": "Ruedi", 
        "id": "sg:person.015313356237.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems Biology, Seattle, WA", 
          "id": "http://www.grid.ac/institutes/grid.64212.33", 
          "name": [
            "Institute for Systems Biology, Seattle, WA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodlett", 
        "givenName": "David R.", 
        "id": "sg:person.01044126157.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Chemical probes for isolating specific subsets of a proteome in conjunction with mass spectrometry have had a profound influence on quantitative analysis of complex protein mixtures. Because of the dynamic range of protein abundance, comprehensive profiling of complex proteomes has been an exceedingly challenging analytical problem. However, selective isolation of a subset of proteins (i.e., a protein class) from a proteome via chemistries selective for moieties such as phosphates or sulfhydryls substantially reduces the sample complexity by one or two orders of magnitude and enriches a subclass of the proteome prior to mass spectrometric analysis (1). In this chapter, two commonly used chemical probes for selective isolation of cysteine-containing and N-linked carbohydrate-containing peptides for the quantitative analysis of a proteome are described (2\u20135). The first is based on stable isotope affinity tagging of the cysteine residues in a protein; i.e., the original isotope-coded affinity tag (ICAT) method. The second method uses specific chemical probes that selectively isolate N-glycosylated proteins (i.e., the glycopeptide capture method) and subsequently labels the amino groups with light (d0, contains no deuteriums) or heavy (d4, contains four deteriums) forms of succinic anhydride for quantitative measurement.", 
    "editor": [
      {
        "familyName": "Walker", 
        "givenName": "John M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1385/1-59259-890-0:385", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-58829-343-5", 
        "978-1-59259-890-8"
      ], 
      "name": "The Proteomics Protocols Handbook", 
      "type": "Book"
    }, 
    "keywords": [
      "chemical probes", 
      "challenging analytical problem", 
      "selective isolation", 
      "complex protein mixtures", 
      "carbohydrate-containing peptides", 
      "specific chemical probes", 
      "isotope-coded affinity tag (ICAT) method", 
      "mass spectrometric analysis", 
      "Affinity Tag Method", 
      "glycoprotein capture", 
      "succinic anhydride", 
      "amino groups", 
      "complex proteomes", 
      "mass spectrometry", 
      "protein mixtures", 
      "spectrometric analysis", 
      "analytical problems", 
      "affinity tag", 
      "quantitative analysis", 
      "orders of magnitude", 
      "comprehensive profiling", 
      "probe", 
      "sample complexity", 
      "chemistry", 
      "dynamic range", 
      "moiety", 
      "tag method", 
      "spectrometry", 
      "anhydride", 
      "affinity tagging", 
      "heavy form", 
      "cysteine", 
      "mixture", 
      "quantitative measurements", 
      "profound influence", 
      "sulfhydryl", 
      "peptides", 
      "proteome", 
      "subproteome", 
      "phosphate", 
      "second method", 
      "isolation", 
      "capture", 
      "subset of proteins", 
      "method", 
      "protein", 
      "range", 
      "light", 
      "analysis", 
      "measurements", 
      "isotopes", 
      "tags", 
      "influence", 
      "profiling", 
      "form", 
      "magnitude", 
      "group", 
      "protein abundance", 
      "conjunction", 
      "order", 
      "chapter", 
      "tagging", 
      "specific subset", 
      "abundance", 
      "subclasses", 
      "subset", 
      "complexity", 
      "problem"
    ], 
    "name": "Quantitative Analysis of Proteomes and Subproteomes by Isotope-Coded Affinity Tag and Solid-Phase Glycoprotein Capture", 
    "pagination": "385-392", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033274781"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/1-59259-890-0:385"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1385/1-59259-890-0:385", 
      "https://app.dimensions.ai/details/publication/pub.1033274781"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_162.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1385/1-59259-890-0:385"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:385'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:385'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:385'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:385'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      92 URIs      85 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/1-59259-890-0:385 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nc8aabdd4d41b4c139de9d9941e33e7e8
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description Chemical probes for isolating specific subsets of a proteome in conjunction with mass spectrometry have had a profound influence on quantitative analysis of complex protein mixtures. Because of the dynamic range of protein abundance, comprehensive profiling of complex proteomes has been an exceedingly challenging analytical problem. However, selective isolation of a subset of proteins (i.e., a protein class) from a proteome via chemistries selective for moieties such as phosphates or sulfhydryls substantially reduces the sample complexity by one or two orders of magnitude and enriches a subclass of the proteome prior to mass spectrometric analysis (1). In this chapter, two commonly used chemical probes for selective isolation of cysteine-containing and N-linked carbohydrate-containing peptides for the quantitative analysis of a proteome are described (2–5). The first is based on stable isotope affinity tagging of the cysteine residues in a protein; i.e., the original isotope-coded affinity tag (ICAT) method. The second method uses specific chemical probes that selectively isolate N-glycosylated proteins (i.e., the glycopeptide capture method) and subsequently labels the amino groups with light (d0, contains no deuteriums) or heavy (d4, contains four deteriums) forms of succinic anhydride for quantitative measurement.
7 schema:editor Nab72efc539c443d8a022396ba9f3e164
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N658ba373826b408894aa0cf6fe3fc5e6
11 schema:keywords Affinity Tag Method
12 abundance
13 affinity tag
14 affinity tagging
15 amino groups
16 analysis
17 analytical problems
18 anhydride
19 capture
20 carbohydrate-containing peptides
21 challenging analytical problem
22 chapter
23 chemical probes
24 chemistry
25 complex protein mixtures
26 complex proteomes
27 complexity
28 comprehensive profiling
29 conjunction
30 cysteine
31 dynamic range
32 form
33 glycoprotein capture
34 group
35 heavy form
36 influence
37 isolation
38 isotope-coded affinity tag (ICAT) method
39 isotopes
40 light
41 magnitude
42 mass spectrometric analysis
43 mass spectrometry
44 measurements
45 method
46 mixture
47 moiety
48 order
49 orders of magnitude
50 peptides
51 phosphate
52 probe
53 problem
54 profiling
55 profound influence
56 protein
57 protein abundance
58 protein mixtures
59 proteome
60 quantitative analysis
61 quantitative measurements
62 range
63 sample complexity
64 second method
65 selective isolation
66 specific chemical probes
67 specific subset
68 spectrometric analysis
69 spectrometry
70 subclasses
71 subproteome
72 subset
73 subset of proteins
74 succinic anhydride
75 sulfhydryl
76 tag method
77 tagging
78 tags
79 schema:name Quantitative Analysis of Proteomes and Subproteomes by Isotope-Coded Affinity Tag and Solid-Phase Glycoprotein Capture
80 schema:pagination 385-392
81 schema:productId N92df6c155f814a05998fa5de038f2a64
82 Na760151f55f7456b9caac2ca66e75836
83 schema:publisher Nadc04368551c48b3a8cea91cba1e2373
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033274781
85 https://doi.org/10.1385/1-59259-890-0:385
86 schema:sdDatePublished 2022-12-01T06:47
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nadbdccc3b27d49fba0801b82b51d8b88
89 schema:url https://doi.org/10.1385/1-59259-890-0:385
90 sgo:license sg:explorer/license/
91 sgo:sdDataset chapters
92 rdf:type schema:Chapter
93 N0ba5d78cfbe6493489ac88b122f9f5a4 rdf:first sg:person.01147740343.28
94 rdf:rest Ncb964c497bc841b080c434167fbc3ee5
95 N0eaa881e5af340b797811974aff52d2f schema:familyName Walker
96 schema:givenName John M.
97 rdf:type schema:Person
98 N658ba373826b408894aa0cf6fe3fc5e6 schema:isbn 978-1-58829-343-5
99 978-1-59259-890-8
100 schema:name The Proteomics Protocols Handbook
101 rdf:type schema:Book
102 N92df6c155f814a05998fa5de038f2a64 schema:name dimensions_id
103 schema:value pub.1033274781
104 rdf:type schema:PropertyValue
105 N9ae9a1f91a93489c9e7a38af24935ebd rdf:first sg:person.012577025321.30
106 rdf:rest N0ba5d78cfbe6493489ac88b122f9f5a4
107 Na0f0b08635c746309e77d15392d051e9 rdf:first sg:person.01044126157.13
108 rdf:rest rdf:nil
109 Na760151f55f7456b9caac2ca66e75836 schema:name doi
110 schema:value 10.1385/1-59259-890-0:385
111 rdf:type schema:PropertyValue
112 Nab72efc539c443d8a022396ba9f3e164 rdf:first N0eaa881e5af340b797811974aff52d2f
113 rdf:rest rdf:nil
114 Nadbdccc3b27d49fba0801b82b51d8b88 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nadc04368551c48b3a8cea91cba1e2373 schema:name Springer Nature
117 rdf:type schema:Organisation
118 Nc8aabdd4d41b4c139de9d9941e33e7e8 rdf:first sg:person.01064603366.33
119 rdf:rest N9ae9a1f91a93489c9e7a38af24935ebd
120 Ncb964c497bc841b080c434167fbc3ee5 rdf:first sg:person.015313356237.76
121 rdf:rest Na0f0b08635c746309e77d15392d051e9
122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
123 schema:name Chemical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
126 schema:name Analytical Chemistry
127 rdf:type schema:DefinedTerm
128 sg:person.01044126157.13 schema:affiliation grid-institutes:grid.64212.33
129 schema:familyName Goodlett
130 schema:givenName David R.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044126157.13
132 rdf:type schema:Person
133 sg:person.01064603366.33 schema:affiliation grid-institutes:grid.64212.33
134 schema:familyName Yi
135 schema:givenName Eugene
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064603366.33
137 rdf:type schema:Person
138 sg:person.01147740343.28 schema:affiliation grid-institutes:grid.64212.33
139 schema:familyName Cooke
140 schema:givenName Kelly
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147740343.28
142 rdf:type schema:Person
143 sg:person.012577025321.30 schema:affiliation grid-institutes:grid.64212.33
144 schema:familyName Zhang
145 schema:givenName Hui
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577025321.30
147 rdf:type schema:Person
148 sg:person.015313356237.76 schema:affiliation grid-institutes:grid.64212.33
149 schema:familyName Aebersold
150 schema:givenName Ruedi
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313356237.76
152 rdf:type schema:Person
153 grid-institutes:grid.64212.33 schema:alternateName Institute for Systems Biology, Seattle, WA
154 schema:name Institute for Systems Biology, Seattle, WA
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...