Prefractionation of Complex Protein Mixture for 2-D PAGE Using Reversed-Phase Liquid Chromatography View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Volker Badock , Albrecht Otto

ABSTRACT

In the last years, great progress has been achieved by development of multidimensional liquid chromatographic separation methods for separation of protein complexes after enzymatic digestion and subsequent identification of the proteins with mass spectrometric techniques (1–4). However, high-resolution two-dimensional gel electrophoresis (2-DE) is until now the only technique that allows separation of thousands of proteins in a gel (5–8). It has been estimated that the proteome of a given cell contains at least 10,000-30,000 different proteins, but only 2000–10,000 proteins can be visualized on a silver-stained 2-DE gel, depending on the 2-DE method applied (8), and only a proportion of them are present at levels sufficient for mass-spectrometric identification. The introduction of two-dimensional differential gel electrophoresis (2-D DIGE) samples on a single 2-DE gel. Moreover, the dynamic range of the covalent fluorescent protein staining is higher than silver staining. This increases the reproducibility and saves material and time of the experiment. More... »

PAGES

87-95

Book

TITLE

The Proteomics Protocols Handbook

ISBN

978-1-58829-343-5
978-1-59259-890-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/1-59259-890-0:087

DOI

http://dx.doi.org/10.1385/1-59259-890-0:087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002693948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Max Delbrueck Center for Molecular Medicine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badock", 
        "givenName": "Volker", 
        "id": "sg:person.0630622370.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630622370.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Neuroproteomics, Max Delbrueck Center of Molecular Medicine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otto", 
        "givenName": "Albrecht", 
        "id": "sg:person.01250530055.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250530055.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/elps.1150180305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002399232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150180305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002399232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19991001)20:14<2970::aid-elps2970>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005524963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150140199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005940850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150140199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005940850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150191021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006675502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150191021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006675502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-584-7:147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009305820", 
          "https://doi.org/10.1385/1-59259-584-7:147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012772847", 
          "https://doi.org/10.1038/10890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012772847", 
          "https://doi.org/10.1038/10890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)93213-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015321599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2683(200108)22:14<2856::aid-elps2856>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018983762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150190539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019983305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150190539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019983305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150181133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020471865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150181133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020471865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1615-9861(200212)2:12<1652::aid-prot1652>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020768697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200390189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023119208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.11501601169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023959352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.11501601169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023959352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150180304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024711210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150180304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024711210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac010617e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026940192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac010617e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026940192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1001-946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029399357", 
          "https://doi.org/10.1038/nbt1001-946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1001-946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029399357", 
          "https://doi.org/10.1038/nbt1001-946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1615-9861(200101)1:1<42::aid-prot42>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035226468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1615-9861(200201)2:1<58::aid-prot58>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038144221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1615-9861(200201)2:1<58::aid-prot58>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038144221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(98)00929-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047917678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00554529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049114926", 
          "https://doi.org/10.1007/bf00554529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00554529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049114926", 
          "https://doi.org/10.1007/bf00554529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.11501601175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051489305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.11501601175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051489305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19990801)20:11<2181::aid-elps2181>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052813605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2683(19990801)20:11<2181::aid-elps2181>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052813605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074683427", 
          "https://doi.org/10.1007/bf00281458"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "In the last years, great progress has been achieved by development of multidimensional liquid chromatographic separation methods for separation of protein complexes after enzymatic digestion and subsequent identification of the proteins with mass spectrometric techniques (1\u20134). However, high-resolution two-dimensional gel electrophoresis (2-DE) is until now the only technique that allows separation of thousands of proteins in a gel (5\u20138). It has been estimated that the proteome of a given cell contains at least 10,000-30,000 different proteins, but only 2000\u201310,000 proteins can be visualized on a silver-stained 2-DE gel, depending on the 2-DE method applied (8), and only a proportion of them are present at levels sufficient for mass-spectrometric identification. The introduction of two-dimensional differential gel electrophoresis (2-D DIGE) samples on a single 2-DE gel. Moreover, the dynamic range of the covalent fluorescent protein staining is higher than silver staining. This increases the reproducibility and saves material and time of the experiment.", 
    "editor": [
      {
        "familyName": "Walker", 
        "givenName": "John M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1385/1-59259-890-0:087", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-58829-343-5", 
        "978-1-59259-890-8"
      ], 
      "name": "The Proteomics Protocols Handbook", 
      "type": "Book"
    }, 
    "name": "Prefractionation of Complex Protein Mixture for 2-D PAGE Using Reversed-Phase Liquid Chromatography", 
    "pagination": "87-95", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/1-59259-890-0:087"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0cd38bf8ca535478eccfdc8c5e5b706082792b1a74e050a8f5cbfda47a8aadaa"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002693948"
        ]
      }
    ], 
    "publisher": {
      "location": "Totowa, NJ", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1385/1-59259-890-0:087", 
      "https://app.dimensions.ai/details/publication/pub.1002693948"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000244.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1385/1-59259-890-0:087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/1-59259-890-0:087'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/1-59259-890-0:087 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N35ec054e3fcf46d48109eacfd3bd2864
4 schema:citation sg:pub.10.1007/bf00281458
5 sg:pub.10.1007/bf00554529
6 sg:pub.10.1038/10890
7 sg:pub.10.1038/nature01511
8 sg:pub.10.1038/nbt1001-946
9 sg:pub.10.1385/1-59259-584-7:147
10 https://doi.org/10.1002/(sici)1522-2683(19990801)20:11<2181::aid-elps2181>3.0.co;2-q
11 https://doi.org/10.1002/(sici)1522-2683(19991001)20:14<2970::aid-elps2970>3.0.co;2-p
12 https://doi.org/10.1002/1522-2683(200108)22:14<2856::aid-elps2856>3.0.co;2-u
13 https://doi.org/10.1002/1615-9861(200101)1:1<42::aid-prot42>3.0.co;2-j
14 https://doi.org/10.1002/1615-9861(200201)2:1<58::aid-prot58>3.0.co;2-g
15 https://doi.org/10.1002/1615-9861(200212)2:12<1652::aid-prot1652>3.0.co;2-3
16 https://doi.org/10.1002/elps.1150140199
17 https://doi.org/10.1002/elps.11501601169
18 https://doi.org/10.1002/elps.11501601175
19 https://doi.org/10.1002/elps.1150180304
20 https://doi.org/10.1002/elps.1150180305
21 https://doi.org/10.1002/elps.1150181133
22 https://doi.org/10.1002/elps.1150190539
23 https://doi.org/10.1002/elps.1150191021
24 https://doi.org/10.1002/elps.200390189
25 https://doi.org/10.1016/s0021-9673(01)93213-3
26 https://doi.org/10.1016/s0021-9673(98)00929-7
27 https://doi.org/10.1021/ac010617e
28 schema:datePublished 2005
29 schema:datePublishedReg 2005-01-01
30 schema:description In the last years, great progress has been achieved by development of multidimensional liquid chromatographic separation methods for separation of protein complexes after enzymatic digestion and subsequent identification of the proteins with mass spectrometric techniques (1–4). However, high-resolution two-dimensional gel electrophoresis (2-DE) is until now the only technique that allows separation of thousands of proteins in a gel (5–8). It has been estimated that the proteome of a given cell contains at least 10,000-30,000 different proteins, but only 2000–10,000 proteins can be visualized on a silver-stained 2-DE gel, depending on the 2-DE method applied (8), and only a proportion of them are present at levels sufficient for mass-spectrometric identification. The introduction of two-dimensional differential gel electrophoresis (2-D DIGE) samples on a single 2-DE gel. Moreover, the dynamic range of the covalent fluorescent protein staining is higher than silver staining. This increases the reproducibility and saves material and time of the experiment.
31 schema:editor N7cfb18a636dd410d90950231df228c89
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf Nc13bc20ff85347e589e0c72bf6955e26
36 schema:name Prefractionation of Complex Protein Mixture for 2-D PAGE Using Reversed-Phase Liquid Chromatography
37 schema:pagination 87-95
38 schema:productId N2490c3a34e6d4368b10d1f808a83451b
39 N4a67ff5cfdb7453bb72e1c68b5fa6a98
40 N789e69f5af4d4ccdb69c3037fab35c2b
41 schema:publisher N6bd0586e841f4082ba5454037b8dc205
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002693948
43 https://doi.org/10.1385/1-59259-890-0:087
44 schema:sdDatePublished 2019-04-15T12:29
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Na93394243bd04a7ca643ded49c266384
47 schema:url http://link.springer.com/10.1385/1-59259-890-0:087
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N2490c3a34e6d4368b10d1f808a83451b schema:name doi
52 schema:value 10.1385/1-59259-890-0:087
53 rdf:type schema:PropertyValue
54 N35ec054e3fcf46d48109eacfd3bd2864 rdf:first sg:person.0630622370.14
55 rdf:rest N8a3b777123d64a4da46b9b287fe42d06
56 N47e220a49ccc4db88ff9fd14d989cc08 schema:familyName Walker
57 schema:givenName John M.
58 rdf:type schema:Person
59 N4a67ff5cfdb7453bb72e1c68b5fa6a98 schema:name readcube_id
60 schema:value 0cd38bf8ca535478eccfdc8c5e5b706082792b1a74e050a8f5cbfda47a8aadaa
61 rdf:type schema:PropertyValue
62 N6bd0586e841f4082ba5454037b8dc205 schema:location Totowa, NJ
63 schema:name Humana Press
64 rdf:type schema:Organisation
65 N789e69f5af4d4ccdb69c3037fab35c2b schema:name dimensions_id
66 schema:value pub.1002693948
67 rdf:type schema:PropertyValue
68 N7cfb18a636dd410d90950231df228c89 rdf:first N47e220a49ccc4db88ff9fd14d989cc08
69 rdf:rest rdf:nil
70 N7df072a790294a0e9e6ac681eaefda5b schema:name Department of Neuroproteomics, Max Delbrueck Center of Molecular Medicine
71 rdf:type schema:Organization
72 N8a3b777123d64a4da46b9b287fe42d06 rdf:first sg:person.01250530055.17
73 rdf:rest rdf:nil
74 Na1d8249720984958b1c2fa0e1cd23d52 schema:name Max Delbrueck Center for Molecular Medicine
75 rdf:type schema:Organization
76 Na93394243bd04a7ca643ded49c266384 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nc13bc20ff85347e589e0c72bf6955e26 schema:isbn 978-1-58829-343-5
79 978-1-59259-890-8
80 schema:name The Proteomics Protocols Handbook
81 rdf:type schema:Book
82 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
83 schema:name Chemical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
86 schema:name Analytical Chemistry
87 rdf:type schema:DefinedTerm
88 sg:person.01250530055.17 schema:affiliation N7df072a790294a0e9e6ac681eaefda5b
89 schema:familyName Otto
90 schema:givenName Albrecht
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250530055.17
92 rdf:type schema:Person
93 sg:person.0630622370.14 schema:affiliation Na1d8249720984958b1c2fa0e1cd23d52
94 schema:familyName Badock
95 schema:givenName Volker
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630622370.14
97 rdf:type schema:Person
98 sg:pub.10.1007/bf00281458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074683427
99 https://doi.org/10.1007/bf00281458
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf00554529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049114926
102 https://doi.org/10.1007/bf00554529
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
105 https://doi.org/10.1038/10890
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
108 https://doi.org/10.1038/nature01511
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nbt1001-946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399357
111 https://doi.org/10.1038/nbt1001-946
112 rdf:type schema:CreativeWork
113 sg:pub.10.1385/1-59259-584-7:147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009305820
114 https://doi.org/10.1385/1-59259-584-7:147
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/(sici)1522-2683(19990801)20:11<2181::aid-elps2181>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1052813605
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/(sici)1522-2683(19991001)20:14<2970::aid-elps2970>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1005524963
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/1522-2683(200108)22:14<2856::aid-elps2856>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1018983762
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/1615-9861(200101)1:1<42::aid-prot42>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1035226468
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/1615-9861(200201)2:1<58::aid-prot58>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1038144221
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/1615-9861(200212)2:12<1652::aid-prot1652>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020768697
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/elps.1150140199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005940850
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/elps.11501601169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023959352
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/elps.11501601175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051489305
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/elps.1150180304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024711210
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/elps.1150180305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002399232
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/elps.1150181133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020471865
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/elps.1150190539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019983305
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/elps.1150191021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006675502
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/elps.200390189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023119208
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0021-9673(01)93213-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015321599
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0021-9673(98)00929-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047917678
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ac010617e schema:sameAs https://app.dimensions.ai/details/publication/pub.1026940192
151 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...