Protein-Protein Docking: Generation and Filtering of Complexes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000-08-15

AUTHORS

David Webster , Michael J. E. Sternberg , Henry A. Gabb , Richard M. Jackson , Gidon Moont

ABSTRACT

Knowledge of the three-dimensional (3D) structure of a protein-protein complex provides insights into the function of the system that can guide, for example, the systematic design of novel regulators of activity. However, at the end of 1997, there were more than 5000 protein structures in the Brookhaven databank (PDB) but less than 200 sets of coordinates for protein-protein complexes. This disparity is reminiscent of the protein-sequence/protein-structure gap and similarity motivates the development of computational methods for structure prediction. This chapter describes the strategy to start with the coordinates of the two molecules in their unbound states and then computationally model the structure of the bound complex including the conformational changes on association. For reviews of the field of protein docking see refs. 1–3. More... »

PAGES

399-415

References to SciGraph publications

Book

TITLE

Protein Structure Prediction

ISBN

1-59259-368-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/1-59259-368-2:399

DOI

http://dx.doi.org/10.1385/1-59259-368-2:399

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037556658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Webster", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research UK", 
          "id": "https://www.grid.ac/institutes/grid.11485.39", 
          "name": [
            "Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sternberg", 
        "givenName": "Michael J. E.", 
        "id": "sg:person.0611736450.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research UK", 
          "id": "https://www.grid.ac/institutes/grid.11485.39", 
          "name": [
            "Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabb", 
        "givenName": "Henry A.", 
        "id": "sg:person.01366616423.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366616423.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research UK", 
          "id": "https://www.grid.ac/institutes/grid.11485.39", 
          "name": [
            "Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jackson", 
        "givenName": "Richard M.", 
        "id": "sg:person.0765441014.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765441014.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research UK", 
          "id": "https://www.grid.ac/institutes/grid.11485.39", 
          "name": [
            "Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moont", 
        "givenName": "Gidon", 
        "id": "sg:person.01033554214.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033554214.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80269-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002561157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6107(96)00001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002827921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005207423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006129136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-440x(98)80047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008459682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(19990515)35:3<364::aid-prot11>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009017647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.1.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010471073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00126743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012372842", 
          "https://doi.org/10.1007/bf00126743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00126743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012372842", 
          "https://doi.org/10.1007/bf00126743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340110406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017059156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340110406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017059156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340130304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017144653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340130304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017144653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340080302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017148495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340080302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017148495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0494-259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017363565", 
          "https://doi.org/10.1038/nsb0494-259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017574306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.4.1146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018571615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019798474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019798474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/319199a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020743092", 
          "https://doi.org/10.1038/319199a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540130212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022230324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560060317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022441557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560060317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022441557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026469351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-5521(96)90256-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028749785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1995.0375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029141329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(1997)1+<226::aid-prot31>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030787925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(199608)25:4<403::aid-prot1>3.0.co;2-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035621928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560041014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-440x(97)80029-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036661554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(91)80222-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038776709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(91)80222-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038776709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039424951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.6.2195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041905453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043062170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044289144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(1997)1+<198::aid-prot26>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044383754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1994.1198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045013271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047264834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049808030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0396-233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049825643", 
          "https://doi.org/10.1038/nsb0396-233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.1991.10507882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050353771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560010117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053437923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560010117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053437923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/7.6.761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059981080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083023010", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-08-15", 
    "datePublishedReg": "2000-08-15", 
    "description": "Knowledge of the three-dimensional (3D) structure of a protein-protein complex provides insights into the function of the system that can guide, for example, the systematic design of novel regulators of activity. However, at the end of 1997, there were more than 5000 protein structures in the Brookhaven databank (PDB) but less than 200 sets of coordinates for protein-protein complexes. This disparity is reminiscent of the protein-sequence/protein-structure gap and similarity motivates the development of computational methods for structure prediction. This chapter describes the strategy to start with the coordinates of the two molecules in their unbound states and then computationally model the structure of the bound complex including the conformational changes on association. For reviews of the field of protein docking see refs. 1\u20133.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1385/1-59259-368-2:399", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-59259-368-2"
      ], 
      "name": "Protein Structure Prediction", 
      "type": "Book"
    }, 
    "name": "Protein-Protein Docking: Generation and Filtering of Complexes", 
    "pagination": "399-415", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/1-59259-368-2:399"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2e8015838ee03f8f0dd52cdc2074eb7b569672d8c9aba686a4db4a82e237ef2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037556658"
        ]
      }
    ], 
    "publisher": {
      "location": "New Jersey", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1385/1-59259-368-2:399", 
      "https://app.dimensions.ai/details/publication/pub.1037556658"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1385/1-59259-368-2:399"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/1-59259-368-2:399'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/1-59259-368-2:399'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/1-59259-368-2:399'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/1-59259-368-2:399'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      64 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/1-59259-368-2:399 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N6c66fb9b514f4ae3b81760264d1feb82
4 schema:citation sg:pub.10.1007/bf00126743
5 sg:pub.10.1038/319199a0
6 sg:pub.10.1038/nsb0396-233
7 sg:pub.10.1038/nsb0494-259
8 https://app.dimensions.ai/details/publication/pub.1083023010
9 https://doi.org/10.1002/(sici)1097-0134(199608)25:4<403::aid-prot1>3.0.co;2-e
10 https://doi.org/10.1002/(sici)1097-0134(1997)1+<198::aid-prot26>3.0.co;2-i
11 https://doi.org/10.1002/(sici)1097-0134(1997)1+<226::aid-prot31>3.0.co;2-o
12 https://doi.org/10.1002/(sici)1097-0134(19990515)35:3<364::aid-prot11>3.0.co;2-4
13 https://doi.org/10.1002/jcc.540130212
14 https://doi.org/10.1002/pro.5560010117
15 https://doi.org/10.1002/pro.5560041014
16 https://doi.org/10.1002/pro.5560050406
17 https://doi.org/10.1002/pro.5560060317
18 https://doi.org/10.1002/prot.340080302
19 https://doi.org/10.1002/prot.340110406
20 https://doi.org/10.1002/prot.340130304
21 https://doi.org/10.1006/jmbi.1994.1198
22 https://doi.org/10.1006/jmbi.1994.1366
23 https://doi.org/10.1006/jmbi.1995.0375
24 https://doi.org/10.1006/jmbi.1996.0167
25 https://doi.org/10.1006/jmbi.1996.0175
26 https://doi.org/10.1006/jmbi.1996.0868
27 https://doi.org/10.1006/jmbi.1997.1198
28 https://doi.org/10.1006/jmbi.1997.1203
29 https://doi.org/10.1006/jmbi.1997.1233
30 https://doi.org/10.1006/jmbi.1997.1519
31 https://doi.org/10.1016/0022-2836(91)80222-g
32 https://doi.org/10.1016/s0022-2836(05)80035-x
33 https://doi.org/10.1016/s0022-2836(05)80269-4
34 https://doi.org/10.1016/s0079-6107(96)00001-6
35 https://doi.org/10.1016/s0959-440x(97)80029-2
36 https://doi.org/10.1016/s0959-440x(98)80047-x
37 https://doi.org/10.1016/s1074-5521(96)90256-2
38 https://doi.org/10.1073/pnas.89.6.2195
39 https://doi.org/10.1073/pnas.90.4.1146
40 https://doi.org/10.1073/pnas.93.1.60
41 https://doi.org/10.1080/07391102.1991.10507882
42 https://doi.org/10.1093/protein/7.6.761
43 schema:datePublished 2000-08-15
44 schema:datePublishedReg 2000-08-15
45 schema:description Knowledge of the three-dimensional (3D) structure of a protein-protein complex provides insights into the function of the system that can guide, for example, the systematic design of novel regulators of activity. However, at the end of 1997, there were more than 5000 protein structures in the Brookhaven databank (PDB) but less than 200 sets of coordinates for protein-protein complexes. This disparity is reminiscent of the protein-sequence/protein-structure gap and similarity motivates the development of computational methods for structure prediction. This chapter describes the strategy to start with the coordinates of the two molecules in their unbound states and then computationally model the structure of the bound complex including the conformational changes on association. For reviews of the field of protein docking see refs. 1–3.
46 schema:genre chapter
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf Nec943fc311b04972b62ebe793106154e
50 schema:name Protein-Protein Docking: Generation and Filtering of Complexes
51 schema:pagination 399-415
52 schema:productId N32494733651941f485062765f615cf5a
53 Nc7df0ba9497d416080a5b0f01a453c17
54 Ne6d26fada5b9476a85f6e5d3b9c983d6
55 schema:publisher N2c8a600969494c11a90cb2cad04fa65e
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037556658
57 https://doi.org/10.1385/1-59259-368-2:399
58 schema:sdDatePublished 2019-04-15T21:03
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf0f8c020338749ff8e0d33fa39e98087
61 schema:url http://link.springer.com/10.1385/1-59259-368-2:399
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N14e2b102d0914859bbfa14eab42ffc74 schema:familyName Webster
66 schema:givenName David
67 rdf:type schema:Person
68 N2c8a600969494c11a90cb2cad04fa65e schema:location New Jersey
69 schema:name Humana Press
70 rdf:type schema:Organisation
71 N32494733651941f485062765f615cf5a schema:name doi
72 schema:value 10.1385/1-59259-368-2:399
73 rdf:type schema:PropertyValue
74 N48bf403b043141d3a2ce0a2faefec5c6 rdf:first sg:person.01366616423.88
75 rdf:rest N5655f169e6904615a809a0ff9d97cff7
76 N5655f169e6904615a809a0ff9d97cff7 rdf:first sg:person.0765441014.98
77 rdf:rest N5f3fd2b7d0fc4542b3d88a095e349663
78 N5f3fd2b7d0fc4542b3d88a095e349663 rdf:first sg:person.01033554214.41
79 rdf:rest rdf:nil
80 N6c66fb9b514f4ae3b81760264d1feb82 rdf:first N14e2b102d0914859bbfa14eab42ffc74
81 rdf:rest Nbb7716e651084726b965fdd0b70cfe2f
82 Nbb7716e651084726b965fdd0b70cfe2f rdf:first sg:person.0611736450.97
83 rdf:rest N48bf403b043141d3a2ce0a2faefec5c6
84 Nc7df0ba9497d416080a5b0f01a453c17 schema:name readcube_id
85 schema:value b2e8015838ee03f8f0dd52cdc2074eb7b569672d8c9aba686a4db4a82e237ef2
86 rdf:type schema:PropertyValue
87 Ne6d26fada5b9476a85f6e5d3b9c983d6 schema:name dimensions_id
88 schema:value pub.1037556658
89 rdf:type schema:PropertyValue
90 Nec943fc311b04972b62ebe793106154e schema:isbn 1-59259-368-2
91 schema:name Protein Structure Prediction
92 rdf:type schema:Book
93 Nf0f8c020338749ff8e0d33fa39e98087 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biochemistry and Cell Biology
100 rdf:type schema:DefinedTerm
101 sg:person.01033554214.41 schema:affiliation https://www.grid.ac/institutes/grid.11485.39
102 schema:familyName Moont
103 schema:givenName Gidon
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033554214.41
105 rdf:type schema:Person
106 sg:person.01366616423.88 schema:affiliation https://www.grid.ac/institutes/grid.11485.39
107 schema:familyName Gabb
108 schema:givenName Henry A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366616423.88
110 rdf:type schema:Person
111 sg:person.0611736450.97 schema:affiliation https://www.grid.ac/institutes/grid.11485.39
112 schema:familyName Sternberg
113 schema:givenName Michael J. E.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97
115 rdf:type schema:Person
116 sg:person.0765441014.98 schema:affiliation https://www.grid.ac/institutes/grid.11485.39
117 schema:familyName Jackson
118 schema:givenName Richard M.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765441014.98
120 rdf:type schema:Person
121 sg:pub.10.1007/bf00126743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012372842
122 https://doi.org/10.1007/bf00126743
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/319199a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020743092
125 https://doi.org/10.1038/319199a0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nsb0396-233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049825643
128 https://doi.org/10.1038/nsb0396-233
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nsb0494-259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017363565
131 https://doi.org/10.1038/nsb0494-259
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1083023010 schema:CreativeWork
134 https://doi.org/10.1002/(sici)1097-0134(199608)25:4<403::aid-prot1>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1035621928
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/(sici)1097-0134(1997)1+<198::aid-prot26>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1044383754
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/(sici)1097-0134(1997)1+<226::aid-prot31>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1030787925
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/(sici)1097-0134(19990515)35:3<364::aid-prot11>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009017647
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/jcc.540130212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230324
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/pro.5560010117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053437923
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/pro.5560041014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074779
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/pro.5560050406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019798474
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/pro.5560060317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022441557
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/prot.340080302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017148495
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/prot.340110406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017059156
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/prot.340130304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017144653
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1006/jmbi.1994.1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045013271
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1006/jmbi.1994.1366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005207423
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1006/jmbi.1995.0375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029141329
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1006/jmbi.1996.0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264834
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1006/jmbi.1996.0175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039424951
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1006/jmbi.1996.0868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043062170
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1006/jmbi.1997.1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026469351
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1006/jmbi.1997.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049808030
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1006/jmbi.1997.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006129136
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1006/jmbi.1997.1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044289144
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0022-2836(91)80222-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1038776709
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0022-2836(05)80035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017574306
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0022-2836(05)80269-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002561157
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0079-6107(96)00001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002827921
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0959-440x(97)80029-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036661554
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0959-440x(98)80047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008459682
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s1074-5521(96)90256-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028749785
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1073/pnas.89.6.2195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041905453
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.90.4.1146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018571615
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1073/pnas.93.1.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010471073
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/07391102.1991.10507882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050353771
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/protein/7.6.761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059981080
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.11485.39 schema:alternateName Cancer Research UK
203 schema:name Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, London, UK
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...