Statistical Methods for Identifying Differentially Expressed Genes in DNA Microarrays View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-03-13

AUTHORS

Michael J. Brownstein , Arkady Khodursky , John D. Storey , Robert Tibshirani

ABSTRACT

In this chapter we discuss the problem of identifying differentially expressed genes from a set of microarray experiments. Statistically speaking, this task falls under the heading of “multiple hypothesis testing.” In other words, we must perform hypothesis tests on all genes simultaneously to determine whether each one is differentially expressed. Recall that in statistical hypothesis testing, we test a null hypothesis vs an alternative hypothesis. In this example, the null hypothesis is that there is no change in expression levels between experimental conditions. The alternative hypothesis is that there is some change. We reject the null hypothesis if there is enough evidence in favor of the alternative. This amounts to rejecting the null hypothesis if its corresponding statistic falls into some predetermined rejection region. Hypothesis testing is also concerned with measuring the probability of rejecting the null hypothesis when it is really true (called a false positive), and the probability of rejecting the null hypothesis when the alternative hypothesis is really true (called power). More... »

PAGES

149-158

Book

TITLE

Functional Genomics

ISBN

1-59259-364-X

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/1-59259-364-x:149

DOI

http://dx.doi.org/10.1385/1-59259-364-x:149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005570605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Brownstein", 
        "givenName": "Michael J.", 
        "id": "sg:person.071325136.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.071325136.99"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Khodursky", 
        "givenName": "Arkady", 
        "id": "sg:person.01344576370.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344576370.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Statistics, Stanford University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Storey", 
        "givenName": "John D.", 
        "id": "sg:person.0664776023.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664776023.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Statistics, Stanford University", 
            "Department of Health Research & Policy, Stanford University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibshirani", 
        "givenName": "Robert", 
        "id": "sg:person.010253467037.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253467037.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.091062498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018285816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1074290335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029214550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013699998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036427477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(99)00041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053109300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701300099074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753382129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197905"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-03-13", 
    "datePublishedReg": "2003-03-13", 
    "description": "In this chapter we discuss the problem of identifying differentially expressed genes from a set of microarray experiments. Statistically speaking, this task falls under the heading of \u201cmultiple hypothesis testing.\u201d In other words, we must perform hypothesis tests on all genes simultaneously to determine whether each one is differentially expressed. Recall that in statistical hypothesis testing, we test a null hypothesis vs an alternative hypothesis. In this example, the null hypothesis is that there is no change in expression levels between experimental conditions. The alternative hypothesis is that there is some change. We reject the null hypothesis if there is enough evidence in favor of the alternative. This amounts to rejecting the null hypothesis if its corresponding statistic falls into some predetermined rejection region. Hypothesis testing is also concerned with measuring the probability of rejecting the null hypothesis when it is really true (called a false positive), and the probability of rejecting the null hypothesis when the alternative hypothesis is really true (called power).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1385/1-59259-364-x:149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-59259-364-X"
      ], 
      "name": "Functional Genomics", 
      "type": "Book"
    }, 
    "name": "Statistical Methods for Identifying Differentially Expressed Genes in DNA Microarrays", 
    "pagination": "149-158", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/1-59259-364-x:149"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a8a56a12bc2d2a4b211b4faa0b97aa52e2bcae458b8eb3f4dd1ccf1bf31ce7b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005570605"
        ]
      }
    ], 
    "publisher": {
      "location": "New Jersey", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1385/1-59259-364-x:149", 
      "https://app.dimensions.ai/details/publication/pub.1005570605"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1385/1-59259-364-X:149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/1-59259-364-x:149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/1-59259-364-x:149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/1-59259-364-x:149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/1-59259-364-x:149'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      32 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/1-59259-364-x:149 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2424d53cba8140c99914178d0c326488
4 schema:citation https://doi.org/10.1016/s0378-3758(99)00041-5
5 https://doi.org/10.1073/pnas.091062498
6 https://doi.org/10.1089/106652701300099074
7 https://doi.org/10.1111/1467-9868.00346
8 https://doi.org/10.1198/016214501753382129
9 https://doi.org/10.1214/aos/1013699998
10 https://doi.org/10.1214/aos/1074290335
11 schema:datePublished 2003-03-13
12 schema:datePublishedReg 2003-03-13
13 schema:description In this chapter we discuss the problem of identifying differentially expressed genes from a set of microarray experiments. Statistically speaking, this task falls under the heading of “multiple hypothesis testing.” In other words, we must perform hypothesis tests on all genes simultaneously to determine whether each one is differentially expressed. Recall that in statistical hypothesis testing, we test a null hypothesis vs an alternative hypothesis. In this example, the null hypothesis is that there is no change in expression levels between experimental conditions. The alternative hypothesis is that there is some change. We reject the null hypothesis if there is enough evidence in favor of the alternative. This amounts to rejecting the null hypothesis if its corresponding statistic falls into some predetermined rejection region. Hypothesis testing is also concerned with measuring the probability of rejecting the null hypothesis when it is really true (called a false positive), and the probability of rejecting the null hypothesis when the alternative hypothesis is really true (called power).
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N35cb288d188d4aaa9433559f88a0ff93
18 schema:name Statistical Methods for Identifying Differentially Expressed Genes in DNA Microarrays
19 schema:pagination 149-158
20 schema:productId N04f0989a997d41fa9ccf9e48136df969
21 N5c4c2206100947878fdbad13db1c9103
22 Ncda1d7057c1646a38a02370c262316ae
23 schema:publisher Ndb16847b10af426bb9e3cf3bb25a64d4
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005570605
25 https://doi.org/10.1385/1-59259-364-x:149
26 schema:sdDatePublished 2019-04-15T15:18
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N7636dbecd03b47aeae2da4a10c891008
29 schema:url http://link.springer.com/10.1385/1-59259-364-X:149
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N04f0989a997d41fa9ccf9e48136df969 schema:name doi
34 schema:value 10.1385/1-59259-364-x:149
35 rdf:type schema:PropertyValue
36 N08acef32e89040d59a00a1ffe402cd0e rdf:first sg:person.01344576370.92
37 rdf:rest Nff4f4eccf04a4656a48b5a3a99723769
38 N2424d53cba8140c99914178d0c326488 rdf:first sg:person.071325136.99
39 rdf:rest N08acef32e89040d59a00a1ffe402cd0e
40 N35cb288d188d4aaa9433559f88a0ff93 schema:isbn 1-59259-364-X
41 schema:name Functional Genomics
42 rdf:type schema:Book
43 N5c4c2206100947878fdbad13db1c9103 schema:name readcube_id
44 schema:value 1a8a56a12bc2d2a4b211b4faa0b97aa52e2bcae458b8eb3f4dd1ccf1bf31ce7b
45 rdf:type schema:PropertyValue
46 N7636dbecd03b47aeae2da4a10c891008 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Ncda1d7057c1646a38a02370c262316ae schema:name dimensions_id
49 schema:value pub.1005570605
50 rdf:type schema:PropertyValue
51 Nd1b6a51089f148c48b5ea9561efb2c1f rdf:first sg:person.010253467037.73
52 rdf:rest rdf:nil
53 Ndb16847b10af426bb9e3cf3bb25a64d4 schema:location New Jersey
54 schema:name Humana Press
55 rdf:type schema:Organisation
56 Nff4f4eccf04a4656a48b5a3a99723769 rdf:first sg:person.0664776023.23
57 rdf:rest Nd1b6a51089f148c48b5ea9561efb2c1f
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
62 schema:name Statistics
63 rdf:type schema:DefinedTerm
64 sg:person.010253467037.73 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
65 schema:familyName Tibshirani
66 schema:givenName Robert
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253467037.73
68 rdf:type schema:Person
69 sg:person.01344576370.92 schema:familyName Khodursky
70 schema:givenName Arkady
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344576370.92
72 rdf:type schema:Person
73 sg:person.0664776023.23 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
74 schema:familyName Storey
75 schema:givenName John D.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664776023.23
77 rdf:type schema:Person
78 sg:person.071325136.99 schema:familyName Brownstein
79 schema:givenName Michael J.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.071325136.99
81 rdf:type schema:Person
82 https://doi.org/10.1016/s0378-3758(99)00041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053109300
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1073/pnas.091062498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631710
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1089/106652701300099074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204871
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/1467-9868.00346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018285816
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1198/016214501753382129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197905
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1214/aos/1013699998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036427477
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1214/aos/1074290335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029214550
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
97 schema:name Department of Health Research & Policy, Stanford University
98 Department of Statistics, Stanford University
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...