Biological Applications of Scanning Tunneling Microscopy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993-11-27

AUTHORS

Christopher Jones , Barbara Mulloy , Adrian H. Thomas , Phillip M. Williams , Mana S. Cheema , Martyn C. Davies , David E. Jackson , Saul J.B. Tendler

ABSTRACT

The scanning tunneling microscope (STM) is a new and exciting method of direct surface analysis. Following the microscope’s first construction by Binnig and Rohrer in 1982 (1,2)—for which they won the 1986 Nobel Prize for Physics—the instrument has been extensively used to investigate the surface properties of many inorganic conducting materials. In recent years, the microscope has been utilized to investigate biological molecules deposited on suitable conducting surfaces, providing atomic resolution images of single molecules, with no conformational averaging as occurs for spectroscopic techniques associated with the study of bulk molecules. These studies show that the technique is a potentially valuable biophysical tool complementary to the other well established methods that are extensively reviewed in this volume. To date, high resolution images of biological systems, such as DNA (3), globular macromolecules, such as vicilin (4), and phospholipid membranes (5) have been obtained, with the body of scientific literature increasing rapidly with time. This chapter reports on the basis of the use of the technique for imaging biologicals, the equipment required, and how STM imaging is undertaken. More... »

PAGES

25-38

Book

TITLE

Microscopy, Optical Spectroscopy, and Macroscopic Techniques

ISBN

0-89603-232-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1385/0-89603-232-9:25

DOI

http://dx.doi.org/10.1385/0-89603-232-9:25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028037600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Jones", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "familyName": "Mulloy", 
        "givenName": "Barbara", 
        "type": "Person"
      }, 
      {
        "familyName": "Thomas", 
        "givenName": "Adrian H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Nottingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "Phillip M.", 
        "id": "sg:person.011713065452.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011713065452.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Nottingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheema", 
        "givenName": "Mana S.", 
        "id": "sg:person.01077116164.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116164.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Nottingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davies", 
        "givenName": "Martyn C.", 
        "id": "sg:person.01367077636.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367077636.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Nottingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jackson", 
        "givenName": "David E.", 
        "id": "sg:person.01276066164.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276066164.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Nottingham"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tendler", 
        "givenName": "Saul J.B.", 
        "id": "sg:person.015425322167.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015425322167.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0141-8130(89)90036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014521266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-8130(89)90036-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014521266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344228a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016787599", 
          "https://doi.org/10.1038/344228a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339484a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170126", 
          "https://doi.org/10.1038/339484a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0885-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056586371", 
          "https://doi.org/10.1038/scientificamerican0885-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.338189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057944550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.576986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062187033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2727694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3344420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062608511"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-11-27", 
    "datePublishedReg": "1993-11-27", 
    "description": "The scanning tunneling microscope (STM) is a new and exciting method of direct surface analysis. Following the microscope\u2019s first construction by Binnig and Rohrer in 1982 (1,2)\u2014for which they won the 1986 Nobel Prize for Physics\u2014the instrument has been extensively used to investigate the surface properties of many inorganic conducting materials. In recent years, the microscope has been utilized to investigate biological molecules deposited on suitable conducting surfaces, providing atomic resolution images of single molecules, with no conformational averaging as occurs for spectroscopic techniques associated with the study of bulk molecules. These studies show that the technique is a potentially valuable biophysical tool complementary to the other well established methods that are extensively reviewed in this volume. To date, high resolution images of biological systems, such as DNA (3), globular macromolecules, such as vicilin (4), and phospholipid membranes (5) have been obtained, with the body of scientific literature increasing rapidly with time. This chapter reports on the basis of the use of the technique for imaging biologicals, the equipment required, and how STM imaging is undertaken.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1385/0-89603-232-9:25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "0-89603-232-9"
      ], 
      "name": "Microscopy, Optical Spectroscopy, and Macroscopic Techniques", 
      "type": "Book"
    }, 
    "name": "Biological Applications of Scanning Tunneling Microscopy", 
    "pagination": "25-38", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1385/0-89603-232-9:25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8590e59cc3902dc16c5424bc565ce4f3ff27bfe8109bf4409ccdec485c8cc63a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028037600"
        ]
      }
    ], 
    "publisher": {
      "location": "New Jersey", 
      "name": "Humana Press", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1385/0-89603-232-9:25", 
      "https://app.dimensions.ai/details/publication/pub.1028037600"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1385/0-89603-232-9:25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1385/0-89603-232-9:25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1385/0-89603-232-9:25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1385/0-89603-232-9:25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1385/0-89603-232-9:25'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      35 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1385/0-89603-232-9:25 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N5a44fe8e85814591a74c657a55d9cebd
4 schema:citation sg:pub.10.1038/339484a0
5 sg:pub.10.1038/344228a0
6 sg:pub.10.1038/scientificamerican0885-50
7 https://doi.org/10.1016/0141-8130(89)90036-6
8 https://doi.org/10.1063/1.338189
9 https://doi.org/10.1103/physrevlett.49.57
10 https://doi.org/10.1103/physrevlett.50.1998
11 https://doi.org/10.1116/1.576986
12 https://doi.org/10.1126/science.2727694
13 https://doi.org/10.1126/science.3344420
14 schema:datePublished 1993-11-27
15 schema:datePublishedReg 1993-11-27
16 schema:description The scanning tunneling microscope (STM) is a new and exciting method of direct surface analysis. Following the microscope’s first construction by Binnig and Rohrer in 1982 (1,2)—for which they won the 1986 Nobel Prize for Physics—the instrument has been extensively used to investigate the surface properties of many inorganic conducting materials. In recent years, the microscope has been utilized to investigate biological molecules deposited on suitable conducting surfaces, providing atomic resolution images of single molecules, with no conformational averaging as occurs for spectroscopic techniques associated with the study of bulk molecules. These studies show that the technique is a potentially valuable biophysical tool complementary to the other well established methods that are extensively reviewed in this volume. To date, high resolution images of biological systems, such as DNA (3), globular macromolecules, such as vicilin (4), and phospholipid membranes (5) have been obtained, with the body of scientific literature increasing rapidly with time. This chapter reports on the basis of the use of the technique for imaging biologicals, the equipment required, and how STM imaging is undertaken.
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N55d6b225b10a4da793cf4cd0e1ea0719
21 schema:name Biological Applications of Scanning Tunneling Microscopy
22 schema:pagination 25-38
23 schema:productId N43a4e3d5b00649918d8bcadd3b1af8e0
24 Nb16532edc7e9469e8f79b717b8bcab7a
25 Nbc87eab12398464c978021a4d2f527e8
26 schema:publisher Nfadaedcccfa04d46be15c09302d206c8
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028037600
28 https://doi.org/10.1385/0-89603-232-9:25
29 schema:sdDatePublished 2019-04-15T21:58
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0e749bbaf09a41d9ab8cf1d154bd2f3a
32 schema:url http://link.springer.com/10.1385/0-89603-232-9:25
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0e749bbaf09a41d9ab8cf1d154bd2f3a schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N26ed7b146e9b44b885b46e998beaf331 rdf:first N45b94397a4434e9aa04fe86f7f4fffa2
39 rdf:rest N83d7805b209649b69698ff380bb116aa
40 N43a4e3d5b00649918d8bcadd3b1af8e0 schema:name doi
41 schema:value 10.1385/0-89603-232-9:25
42 rdf:type schema:PropertyValue
43 N45b94397a4434e9aa04fe86f7f4fffa2 schema:familyName Thomas
44 schema:givenName Adrian H.
45 rdf:type schema:Person
46 N55d6b225b10a4da793cf4cd0e1ea0719 schema:isbn 0-89603-232-9
47 schema:name Microscopy, Optical Spectroscopy, and Macroscopic Techniques
48 rdf:type schema:Book
49 N5a44fe8e85814591a74c657a55d9cebd rdf:first Nee646e89354541879364ddfa1e65a025
50 rdf:rest N894925f329f34e5e94bca54699c2fce8
51 N5a8d252ef4264e33bf62215e8f4cf536 schema:familyName Mulloy
52 schema:givenName Barbara
53 rdf:type schema:Person
54 N637f750b05924cdea033e0ee5d2dfc45 rdf:first sg:person.01276066164.87
55 rdf:rest Na905fabcf5d74cd5bb6d7b1cea524031
56 N6c195775066b434983b1b5918adb6a82 rdf:first sg:person.01077116164.49
57 rdf:rest Na22c4e902a444e199086a47e3e0a4da6
58 N83d7805b209649b69698ff380bb116aa rdf:first sg:person.011713065452.29
59 rdf:rest N6c195775066b434983b1b5918adb6a82
60 N894925f329f34e5e94bca54699c2fce8 rdf:first N5a8d252ef4264e33bf62215e8f4cf536
61 rdf:rest N26ed7b146e9b44b885b46e998beaf331
62 Na22c4e902a444e199086a47e3e0a4da6 rdf:first sg:person.01367077636.60
63 rdf:rest N637f750b05924cdea033e0ee5d2dfc45
64 Na905fabcf5d74cd5bb6d7b1cea524031 rdf:first sg:person.015425322167.24
65 rdf:rest rdf:nil
66 Nb16532edc7e9469e8f79b717b8bcab7a schema:name readcube_id
67 schema:value 8590e59cc3902dc16c5424bc565ce4f3ff27bfe8109bf4409ccdec485c8cc63a
68 rdf:type schema:PropertyValue
69 Nbc87eab12398464c978021a4d2f527e8 schema:name dimensions_id
70 schema:value pub.1028037600
71 rdf:type schema:PropertyValue
72 Nee646e89354541879364ddfa1e65a025 schema:familyName Jones
73 schema:givenName Christopher
74 rdf:type schema:Person
75 Nfadaedcccfa04d46be15c09302d206c8 schema:location New Jersey
76 schema:name Humana Press
77 rdf:type schema:Organisation
78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
82 schema:name Other Physical Sciences
83 rdf:type schema:DefinedTerm
84 sg:person.01077116164.49 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
85 schema:familyName Cheema
86 schema:givenName Mana S.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116164.49
88 rdf:type schema:Person
89 sg:person.011713065452.29 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
90 schema:familyName Williams
91 schema:givenName Phillip M.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011713065452.29
93 rdf:type schema:Person
94 sg:person.01276066164.87 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
95 schema:familyName Jackson
96 schema:givenName David E.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276066164.87
98 rdf:type schema:Person
99 sg:person.01367077636.60 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
100 schema:familyName Davies
101 schema:givenName Martyn C.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367077636.60
103 rdf:type schema:Person
104 sg:person.015425322167.24 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
105 schema:familyName Tendler
106 schema:givenName Saul J.B.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015425322167.24
108 rdf:type schema:Person
109 sg:pub.10.1038/339484a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170126
110 https://doi.org/10.1038/339484a0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/344228a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016787599
113 https://doi.org/10.1038/344228a0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/scientificamerican0885-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056586371
116 https://doi.org/10.1038/scientificamerican0885-50
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0141-8130(89)90036-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014521266
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.338189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057944550
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.49.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787982
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.50.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788637
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1116/1.576986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062187033
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1126/science.2727694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553482
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.3344420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062608511
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
133 schema:name Department of Pharmaceutical Sciences, University of Nottingham
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...