Gas dynamic principles of cold spray View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

R. C. Dykhuizen, M. F. Smith

ABSTRACT

This paper presents an analytical model of the cold-spray process. By assuming a one-dimensional isentropic flow and constant gas properties, analytical equations are solved to predict the spray particle velocities. The solutions demonstrate the interaction between the numerous geometric and material properties. The analytical results allow determination of an optimal design for a cold-spray nozzle. The spray particle velocity is determined to be a strong function of the gas properties, particle material density, and size. It is also shown that the system performance is sensitive to the nozzle length, but not sensitive to the nozzle shape. Thus, it is often possible to use one nozzle design for a variety of operational conditions. Many of the results obtained in this article are also directly applicable to other thermal spray processes. More... »

PAGES

205-212

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1361/105996398770350945

DOI

http://dx.doi.org/10.1361/105996398770350945

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043400429


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.474520.0", 
          "name": [
            "Sandia National Laboratories, 87185-0835, Albuquerque, NM"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dykhuizen", 
        "givenName": "R. C.", 
        "id": "sg:person.012650771207.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650771207.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.474520.0", 
          "name": [
            "Sandia National Laboratories, 87185-0835, Albuquerque, NM"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "M. F.", 
        "id": "sg:person.014655177771.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014655177771.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01401446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008607047", 
          "https://doi.org/10.1007/bf01401446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(89)90074-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016802902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(89)90074-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016802902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.61409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036733325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(88)90085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040984566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(88)90085-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040984566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-06", 
    "datePublishedReg": "1998-06-01", 
    "description": "This paper presents an analytical model of the cold-spray process. By assuming a one-dimensional isentropic flow and constant gas properties, analytical equations are solved to predict the spray particle velocities. The solutions demonstrate the interaction between the numerous geometric and material properties. The analytical results allow determination of an optimal design for a cold-spray nozzle. The spray particle velocity is determined to be a strong function of the gas properties, particle material density, and size. It is also shown that the system performance is sensitive to the nozzle length, but not sensitive to the nozzle shape. Thus, it is often possible to use one nozzle design for a variety of operational conditions. Many of the results obtained in this article are also directly applicable to other thermal spray processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1361/105996398770350945", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136229", 
        "issn": [
          "1059-9630", 
          "1544-1016"
        ], 
        "name": "Journal of Thermal Spray Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Gas dynamic principles of cold spray", 
    "pagination": "205-212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cebb7627b9e01d0b3fcc1f3fb03485abf12dceb2cdfc999430aed033732ad15b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1361/105996398770350945"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043400429"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1361/105996398770350945", 
      "https://app.dimensions.ai/details/publication/pub.1043400429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1361/105996398770350945"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1361/105996398770350945'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1361/105996398770350945'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1361/105996398770350945'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1361/105996398770350945'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1361/105996398770350945 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Neebfb015b5b24472abf1c1ab0c684c8f
4 schema:citation sg:pub.10.1007/bf01401446
5 https://doi.org/10.1016/0257-8972(88)90085-0
6 https://doi.org/10.1016/0257-8972(89)90074-1
7 https://doi.org/10.2514/3.61409
8 schema:datePublished 1998-06
9 schema:datePublishedReg 1998-06-01
10 schema:description This paper presents an analytical model of the cold-spray process. By assuming a one-dimensional isentropic flow and constant gas properties, analytical equations are solved to predict the spray particle velocities. The solutions demonstrate the interaction between the numerous geometric and material properties. The analytical results allow determination of an optimal design for a cold-spray nozzle. The spray particle velocity is determined to be a strong function of the gas properties, particle material density, and size. It is also shown that the system performance is sensitive to the nozzle length, but not sensitive to the nozzle shape. Thus, it is often possible to use one nozzle design for a variety of operational conditions. Many of the results obtained in this article are also directly applicable to other thermal spray processes.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N9551d43128794d578dbef9f03da43641
15 Nc335413d7db543f1a124cf50fa581e66
16 sg:journal.1136229
17 schema:name Gas dynamic principles of cold spray
18 schema:pagination 205-212
19 schema:productId N5b2d796b9bf049409442a8ec55ac270b
20 Na3995c9c848246d3969b082e197ea4fe
21 Nc5442e2fbee747259a44777458384d6c
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043400429
23 https://doi.org/10.1361/105996398770350945
24 schema:sdDatePublished 2019-04-10T13:13
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Na14700bc1ded48b3bd72ae7ad4c49b05
27 schema:url http://link.springer.com/10.1361/105996398770350945
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N5b2d796b9bf049409442a8ec55ac270b schema:name dimensions_id
32 schema:value pub.1043400429
33 rdf:type schema:PropertyValue
34 N64ca9033b8fc4212b8955f628483d791 rdf:first sg:person.014655177771.44
35 rdf:rest rdf:nil
36 N9551d43128794d578dbef9f03da43641 schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 Na14700bc1ded48b3bd72ae7ad4c49b05 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Na3995c9c848246d3969b082e197ea4fe schema:name doi
41 schema:value 10.1361/105996398770350945
42 rdf:type schema:PropertyValue
43 Nc335413d7db543f1a124cf50fa581e66 schema:volumeNumber 7
44 rdf:type schema:PublicationVolume
45 Nc5442e2fbee747259a44777458384d6c schema:name readcube_id
46 schema:value cebb7627b9e01d0b3fcc1f3fb03485abf12dceb2cdfc999430aed033732ad15b
47 rdf:type schema:PropertyValue
48 Neebfb015b5b24472abf1c1ab0c684c8f rdf:first sg:person.012650771207.83
49 rdf:rest N64ca9033b8fc4212b8955f628483d791
50 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
51 schema:name Engineering
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
54 schema:name Interdisciplinary Engineering
55 rdf:type schema:DefinedTerm
56 sg:journal.1136229 schema:issn 1059-9630
57 1544-1016
58 schema:name Journal of Thermal Spray Technology
59 rdf:type schema:Periodical
60 sg:person.012650771207.83 schema:affiliation https://www.grid.ac/institutes/grid.474520.0
61 schema:familyName Dykhuizen
62 schema:givenName R. C.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650771207.83
64 rdf:type schema:Person
65 sg:person.014655177771.44 schema:affiliation https://www.grid.ac/institutes/grid.474520.0
66 schema:familyName Smith
67 schema:givenName M. F.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014655177771.44
69 rdf:type schema:Person
70 sg:pub.10.1007/bf01401446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008607047
71 https://doi.org/10.1007/bf01401446
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0257-8972(88)90085-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040984566
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/0257-8972(89)90074-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016802902
76 rdf:type schema:CreativeWork
77 https://doi.org/10.2514/3.61409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036733325
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.474520.0 schema:alternateName Sandia National Laboratories
80 schema:name Sandia National Laboratories, 87185-0835, Albuquerque, NM
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...