Analysis of tantalum coatings produced by the kinetic spray process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

T. Van Steenkiste, D. W. Gorkiewicz

ABSTRACT

Tantalum (Ta) coatings have been produced using a relatively new process, kinetic spray. Ta starting powders having particle diameters greater than 65 µm are injected into a de Laval-type nozzle, entrained in a supersonic gas stream, and accelerated to high velocities due to drag effects. The particles’ kinetic energy is transformed via plastic deformation into strain and heat on impact with the substrate surface. Particles are not thermally softened or melted, producing relatively low oxide, reduced residual stress, high adhesion and low porosity coatings. Analysis of the mechanical and physical properties of these Ta coatings demonstrated increasing hardness, cohesive adhesion, and decreasing porosity as a function of particle velocity. Comparison between kinetically sprayed coatings and coatings produced using conventional coating methods will be discussed. More... »

PAGES

265-273

References to SciGraph publications

  • 1996-12. Densification of plasma-sprayed titanium and tantalum coatings in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1999-12. Impact of high velocity cold spray particles in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1998-06. Gas dynamic principles of cold spray in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • 1999-12. Particle velocity and deposition efficiency in the cold spray process in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • Journal

    TITLE

    Journal of Thermal Spray Technology

    ISSUE

    2

    VOLUME

    13

    Related Patents

  • Methods Of Joining Metallic Protective Layers
  • Dynamic Dehydriding Of Refractory Metal Powders
  • Fine Grained, Non Banded, Refractory Metal Sputtering Targets With A Uniformly Random Crystallographic Orientation, Method For Making Such Film, And Thin Film Based Devices And Products Made Therefrom
  • Method For Coating A Substrate Surface And Coated Product
  • Methods Of Manufacturing Large-Area Sputtering Targets
  • Methods Of Rejuvenating Sputtering Targets
  • Method Of Joining Tantalum Clad Steel Structures
  • Methods Of Joining Protective Metal-Clad Structures
  • Protective Metal-Clad Structures
  • Low-Energy Method For Fabrication Of Large-Area Sputtering Targets
  • Method For Joining Tantalum Clad Steel Structures
  • Methods Of Joining Metallic Protective Layers
  • Methods Of Rejuvenating Sputtering Targets
  • Process For Preparing Metal Powders Having Low Oxygen Content, Powders So-Produced And Uses Thereof
  • Methods Of Forming Sputtering Targets
  • Fine Grained, Non Banded, Refractory Metal Sputtering Targets With A Uniformly Random Crystallographic Orientation, Method For Making Such Film, And Thin Film Based Devices And Products Made There From
  • Methods Of Manufacturing Large-Area Sputtering Targets Using Interlocking Joints
  • Dynamic Dehydriding Of Refractory Metal Powders
  • Dynamic Dehydriding Of Refractory Metal Powders
  • Process For Preparing Metal Powders Having Low Oxygen Content, Powders So-Produced And Uses Thereof
  • Large-Area Sputtering Targets
  • Low-Energy Method Of Manufacturing Bulk Metallic Structures With Submicron Grain Sizes
  • Methods Of Joining Metallic Protective Layers
  • Methods Of Manufacturing Large-Area Sputtering Targets Using Interlocking Joints
  • Methods Of Manufacturing High-Strength Large-Area Sputtering Targets
  • Methods Of Manufacturing Large-Area Sputtering Targets By Cold Spray
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1361/10599630419418

    DOI

    http://dx.doi.org/10.1361/10599630419418

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002304005


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Delphi Research Laboratories, 48315, Shelby Township, MI"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Steenkiste", 
            "givenName": "T.", 
            "id": "sg:person.010225554731.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225554731.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Delphi Research Laboratories, 48315, Shelby Township, MI"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorkiewicz", 
            "givenName": "D. W.", 
            "id": "sg:person.015334636333.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334636333.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0257-8972(99)00337-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011117188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996399770350278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012776735", 
              "https://doi.org/10.1361/105996399770350278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016452949", 
              "https://doi.org/10.1007/bf02645274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(98)00709-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020093119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996399770350250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020972880", 
              "https://doi.org/10.1361/105996399770350250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(02)00018-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036346971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1361/105996398770350945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043400429", 
              "https://doi.org/10.1361/105996398770350945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/proc-542-65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067943778"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-06", 
        "datePublishedReg": "2004-06-01", 
        "description": "Tantalum (Ta) coatings have been produced using a relatively new process, kinetic spray. Ta starting powders having particle diameters greater than 65 \u00b5m are injected into a de Laval-type nozzle, entrained in a supersonic gas stream, and accelerated to high velocities due to drag effects. The particles\u2019 kinetic energy is transformed via plastic deformation into strain and heat on impact with the substrate surface. Particles are not thermally softened or melted, producing relatively low oxide, reduced residual stress, high adhesion and low porosity coatings. Analysis of the mechanical and physical properties of these Ta coatings demonstrated increasing hardness, cohesive adhesion, and decreasing porosity as a function of particle velocity. Comparison between kinetically sprayed coatings and coatings produced using conventional coating methods will be discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1361/10599630419418", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136229", 
            "issn": [
              "1059-9630", 
              "1544-1016"
            ], 
            "name": "Journal of Thermal Spray Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Analysis of tantalum coatings produced by the kinetic spray process", 
        "pagination": "265-273", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0af83d9380a73290a7dd9c3b4e93315ee3b7aa995214e990f64fc0432ec6ac27"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1361/10599630419418"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002304005"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1361/10599630419418", 
          "https://app.dimensions.ai/details/publication/pub.1002304005"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1361/10599630419418"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1361/10599630419418'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1361/10599630419418'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1361/10599630419418'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1361/10599630419418'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1361/10599630419418 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nec628b3525d6458bb65fa7b0536cf35a
    4 schema:citation sg:pub.10.1007/bf02645274
    5 sg:pub.10.1361/105996398770350945
    6 sg:pub.10.1361/105996399770350250
    7 sg:pub.10.1361/105996399770350278
    8 https://doi.org/10.1016/s0257-8972(02)00018-x
    9 https://doi.org/10.1016/s0257-8972(98)00709-9
    10 https://doi.org/10.1016/s0257-8972(99)00337-0
    11 https://doi.org/10.1557/proc-542-65
    12 schema:datePublished 2004-06
    13 schema:datePublishedReg 2004-06-01
    14 schema:description Tantalum (Ta) coatings have been produced using a relatively new process, kinetic spray. Ta starting powders having particle diameters greater than 65 µm are injected into a de Laval-type nozzle, entrained in a supersonic gas stream, and accelerated to high velocities due to drag effects. The particles’ kinetic energy is transformed via plastic deformation into strain and heat on impact with the substrate surface. Particles are not thermally softened or melted, producing relatively low oxide, reduced residual stress, high adhesion and low porosity coatings. Analysis of the mechanical and physical properties of these Ta coatings demonstrated increasing hardness, cohesive adhesion, and decreasing porosity as a function of particle velocity. Comparison between kinetically sprayed coatings and coatings produced using conventional coating methods will be discussed.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N4342201af7274953ac8772d264e9a774
    19 N74f333a6f5a342e39ab3187bcebe0013
    20 sg:journal.1136229
    21 schema:name Analysis of tantalum coatings produced by the kinetic spray process
    22 schema:pagination 265-273
    23 schema:productId N3cbbc220f32249d2854e90312eb723dc
    24 N7902e3a55ee74da89c13a10ab8982b85
    25 Nb575e5b9f89c42cc8d7c63c6a664e71e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002304005
    27 https://doi.org/10.1361/10599630419418
    28 schema:sdDatePublished 2019-04-10T17:28
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N3c96dc5e54ff46b6ac1823100cde8b1e
    31 schema:url http://link.springer.com/10.1361/10599630419418
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N13f89d2079674e7cafce5eb8cc67760a rdf:first sg:person.015334636333.35
    36 rdf:rest rdf:nil
    37 N3c96dc5e54ff46b6ac1823100cde8b1e schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N3cbbc220f32249d2854e90312eb723dc schema:name doi
    40 schema:value 10.1361/10599630419418
    41 rdf:type schema:PropertyValue
    42 N4342201af7274953ac8772d264e9a774 schema:issueNumber 2
    43 rdf:type schema:PublicationIssue
    44 N6935878ed25449a0a3e3dbf00ca1e236 schema:name Delphi Research Laboratories, 48315, Shelby Township, MI
    45 rdf:type schema:Organization
    46 N74f333a6f5a342e39ab3187bcebe0013 schema:volumeNumber 13
    47 rdf:type schema:PublicationVolume
    48 N7902e3a55ee74da89c13a10ab8982b85 schema:name readcube_id
    49 schema:value 0af83d9380a73290a7dd9c3b4e93315ee3b7aa995214e990f64fc0432ec6ac27
    50 rdf:type schema:PropertyValue
    51 Nb575e5b9f89c42cc8d7c63c6a664e71e schema:name dimensions_id
    52 schema:value pub.1002304005
    53 rdf:type schema:PropertyValue
    54 Ne391664ad69d4bbfaee9dc9c60df47f7 schema:name Delphi Research Laboratories, 48315, Shelby Township, MI
    55 rdf:type schema:Organization
    56 Nec628b3525d6458bb65fa7b0536cf35a rdf:first sg:person.010225554731.34
    57 rdf:rest N13f89d2079674e7cafce5eb8cc67760a
    58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Engineering
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Materials Engineering
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1136229 schema:issn 1059-9630
    65 1544-1016
    66 schema:name Journal of Thermal Spray Technology
    67 rdf:type schema:Periodical
    68 sg:person.010225554731.34 schema:affiliation Ne391664ad69d4bbfaee9dc9c60df47f7
    69 schema:familyName Van Steenkiste
    70 schema:givenName T.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010225554731.34
    72 rdf:type schema:Person
    73 sg:person.015334636333.35 schema:affiliation N6935878ed25449a0a3e3dbf00ca1e236
    74 schema:familyName Gorkiewicz
    75 schema:givenName D. W.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334636333.35
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf02645274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016452949
    79 https://doi.org/10.1007/bf02645274
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1361/105996398770350945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043400429
    82 https://doi.org/10.1361/105996398770350945
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1361/105996399770350250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020972880
    85 https://doi.org/10.1361/105996399770350250
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1361/105996399770350278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012776735
    88 https://doi.org/10.1361/105996399770350278
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/s0257-8972(02)00018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036346971
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/s0257-8972(98)00709-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020093119
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/s0257-8972(99)00337-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011117188
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1557/proc-542-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067943778
    97 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...