Splat shapes in a thermal spray coating process: Simulations and experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-06

AUTHORS

M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi

ABSTRACT

We studied the deposition of nickel particles in a plasma spray on a stainless steel surface using both experiments and numerical simulations. We developed a three-dimensional computational model of free-surface fluid flow that includes heat transfer and solidification and used it to simulate the impact of nickel partcles. In our experiments, particles landing on a polished stainless steel surface at a temperature below 300 °C splashed and formed irregular splats, whereas those deposited on substrates heated above 400 °C formed round disk splats. Simulations showed that formation of fingers around the periphery of a spreading drop is caused by the presence of a solid layer. Droplets that spread completely before the onset of solidification will not splash. To sufficiently delay the instant at which solidification started in our simulations to obtain disk splats, we had to increase the thermal contact resistance between the droplet and the substrate by an order of magnitude. We measured the thickness of the oxide layer on the test surfaces used in our experiments and confirmed that heating them creates an oxide layer on the surface that increases the thermal contact resistance. We demonstrated that the numerical model could be used to simulate the deposition of multiple droplets on a surface to build up a coating. More... »

PAGES

206-217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1361/105996302770348862

DOI

http://dx.doi.org/10.1361/105996302770348862

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013002960


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Mechanical and Industrial Engineering, University of Toronto, 5 King\u2019s College Rd., M5S 3G8, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pasandideh-Fard", 
        "givenName": "M.", 
        "id": "sg:person.013336600057.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013336600057.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Mechanical and Industrial Engineering, University of Toronto, 5 King\u2019s College Rd., M5S 3G8, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pershin", 
        "givenName": "V.", 
        "id": "sg:person.01207431476.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207431476.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Mechanical and Industrial Engineering, University of Toronto, 5 King\u2019s College Rd., M5S 3G8, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandra", 
        "givenName": "S.", 
        "id": "sg:person.01021265632.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021265632.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Mechanical and Industrial Engineering, University of Toronto, 5 King\u2019s College Rd., M5S 3G8, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mostaghimi", 
        "givenName": "J.", 
        "id": "sg:person.01242175146.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242175146.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90029-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90029-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01512629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009715127", 
          "https://doi.org/10.1007/bf01512629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(98)00023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013325846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(95)00305-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025147185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(96)00107-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036763315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1996.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042538444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(83)80017-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045836689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02648528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051981629", 
          "https://doi.org/10.1007/bf02648528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02648528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051981629", 
          "https://doi.org/10.1007/bf02648528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122150"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-06", 
    "datePublishedReg": "2002-06-01", 
    "description": "We studied the deposition of nickel particles in a plasma spray on a stainless steel surface using both experiments and numerical simulations. We developed a three-dimensional computational model of free-surface fluid flow that includes heat transfer and solidification and used it to simulate the impact of nickel partcles. In our experiments, particles landing on a polished stainless steel surface at a temperature below 300 \u00b0C splashed and formed irregular splats, whereas those deposited on substrates heated above 400 \u00b0C formed round disk splats. Simulations showed that formation of fingers around the periphery of a spreading drop is caused by the presence of a solid layer. Droplets that spread completely before the onset of solidification will not splash. To sufficiently delay the instant at which solidification started in our simulations to obtain disk splats, we had to increase the thermal contact resistance between the droplet and the substrate by an order of magnitude. We measured the thickness of the oxide layer on the test surfaces used in our experiments and confirmed that heating them creates an oxide layer on the surface that increases the thermal contact resistance. We demonstrated that the numerical model could be used to simulate the deposition of multiple droplets on a surface to build up a coating.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1361/105996302770348862", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136229", 
        "issn": [
          "1059-9630", 
          "1544-1016"
        ], 
        "name": "Journal of Thermal Spray Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Splat shapes in a thermal spray coating process: Simulations and experiments", 
    "pagination": "206-217", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3df1f9f868097caa66ab35dfb546890089402c573f27123907be9eeb70ed80d3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1361/105996302770348862"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013002960"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1361/105996302770348862", 
      "https://app.dimensions.ai/details/publication/pub.1013002960"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1361/105996302770348862"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1361/105996302770348862'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1361/105996302770348862'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1361/105996302770348862'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1361/105996302770348862'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1361/105996302770348862 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nfb5262ac67d24615bcd3c069f4c0beaf
4 schema:citation sg:pub.10.1007/bf01512629
5 sg:pub.10.1007/bf02648528
6 https://doi.org/10.1006/jcph.1996.5468
7 https://doi.org/10.1016/0017-9310(89)90029-x
8 https://doi.org/10.1016/0017-9310(95)00305-3
9 https://doi.org/10.1016/0017-9310(96)00107-x
10 https://doi.org/10.1016/s0017-9310(83)80017-9
11 https://doi.org/10.1016/s0017-9310(98)00023-4
12 https://doi.org/10.1063/1.870005
13 schema:datePublished 2002-06
14 schema:datePublishedReg 2002-06-01
15 schema:description We studied the deposition of nickel particles in a plasma spray on a stainless steel surface using both experiments and numerical simulations. We developed a three-dimensional computational model of free-surface fluid flow that includes heat transfer and solidification and used it to simulate the impact of nickel partcles. In our experiments, particles landing on a polished stainless steel surface at a temperature below 300 °C splashed and formed irregular splats, whereas those deposited on substrates heated above 400 °C formed round disk splats. Simulations showed that formation of fingers around the periphery of a spreading drop is caused by the presence of a solid layer. Droplets that spread completely before the onset of solidification will not splash. To sufficiently delay the instant at which solidification started in our simulations to obtain disk splats, we had to increase the thermal contact resistance between the droplet and the substrate by an order of magnitude. We measured the thickness of the oxide layer on the test surfaces used in our experiments and confirmed that heating them creates an oxide layer on the surface that increases the thermal contact resistance. We demonstrated that the numerical model could be used to simulate the deposition of multiple droplets on a surface to build up a coating.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N554d23e5da984783b2fa8bfa291dc660
20 Ncaac2f91dcf44f5dba7426f4ba60dac8
21 sg:journal.1136229
22 schema:name Splat shapes in a thermal spray coating process: Simulations and experiments
23 schema:pagination 206-217
24 schema:productId N099edd6239ca44b18894edc04b66432c
25 N1e16fdead08747a09fa17ab421933f44
26 N31bfe2e0516f46e7b3f2e0037cd89a6a
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013002960
28 https://doi.org/10.1361/105996302770348862
29 schema:sdDatePublished 2019-04-10T18:17
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N828e491f628b46cbb611a4c871378e55
32 schema:url http://link.springer.com/10.1361/105996302770348862
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N099edd6239ca44b18894edc04b66432c schema:name dimensions_id
37 schema:value pub.1013002960
38 rdf:type schema:PropertyValue
39 N165352af5a81454d9ac8ef4116bc86ca rdf:first sg:person.01242175146.55
40 rdf:rest rdf:nil
41 N1e16fdead08747a09fa17ab421933f44 schema:name doi
42 schema:value 10.1361/105996302770348862
43 rdf:type schema:PropertyValue
44 N31bfe2e0516f46e7b3f2e0037cd89a6a schema:name readcube_id
45 schema:value 3df1f9f868097caa66ab35dfb546890089402c573f27123907be9eeb70ed80d3
46 rdf:type schema:PropertyValue
47 N554d23e5da984783b2fa8bfa291dc660 schema:volumeNumber 11
48 rdf:type schema:PublicationVolume
49 N828e491f628b46cbb611a4c871378e55 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N9f44878229c34ca1883133917456f780 rdf:first sg:person.01207431476.71
52 rdf:rest Ne9d5bdc1cdd7481d85ae2990a42c9a55
53 Ncaac2f91dcf44f5dba7426f4ba60dac8 schema:issueNumber 2
54 rdf:type schema:PublicationIssue
55 Ne9d5bdc1cdd7481d85ae2990a42c9a55 rdf:first sg:person.01021265632.02
56 rdf:rest N165352af5a81454d9ac8ef4116bc86ca
57 Nfb5262ac67d24615bcd3c069f4c0beaf rdf:first sg:person.013336600057.20
58 rdf:rest N9f44878229c34ca1883133917456f780
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
63 schema:name Interdisciplinary Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1136229 schema:issn 1059-9630
66 1544-1016
67 schema:name Journal of Thermal Spray Technology
68 rdf:type schema:Periodical
69 sg:person.01021265632.02 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
70 schema:familyName Chandra
71 schema:givenName S.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021265632.02
73 rdf:type schema:Person
74 sg:person.01207431476.71 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
75 schema:familyName Pershin
76 schema:givenName V.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207431476.71
78 rdf:type schema:Person
79 sg:person.01242175146.55 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
80 schema:familyName Mostaghimi
81 schema:givenName J.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242175146.55
83 rdf:type schema:Person
84 sg:person.013336600057.20 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
85 schema:familyName Pasandideh-Fard
86 schema:givenName M.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013336600057.20
88 rdf:type schema:Person
89 sg:pub.10.1007/bf01512629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009715127
90 https://doi.org/10.1007/bf01512629
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02648528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051981629
93 https://doi.org/10.1007/bf02648528
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1006/jcph.1996.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042538444
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0017-9310(89)90029-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004543318
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0017-9310(95)00305-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025147185
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0017-9310(96)00107-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036763315
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0017-9310(83)80017-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045836689
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0017-9310(98)00023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013325846
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.870005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122150
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
110 schema:name Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Rd., M5S 3G8, Toronto, Canada
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...