Oxidation of stainless steel in the high velocity oxy-fuel process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

K. Dobler, H. Kreye, R. Schwetzke

ABSTRACT

The high velocity oxy-fuel (HVOF) spray process has been primarily used for the application of wear-resistant coatings and, with the introduction of new, more powerful systems, is being increasingly considered for producing corrosion-resistant coatings. In this study, the influence of various spray parameters for the JP-5000 and Diamond Jet (DJ) Hybrid systems on the oxidation of stainless steel 316L is characterized. Experimental results reveal that coating oxygen contents of less than 1 wt.% can be more easily attained with the JP-5000 than the DJ Hybrid systems because of the former’s design. In both cases, however, the low particle temperatures necessary for low oxygen content coatings may impair bond and cohesive strength. Heat treating the coatings after processing reduces hardness, metallurgically enhances bond strength, and enables the spheroidization of oxide layers surrounding unmelted particles. An empirical model describing oxidation in the thermal spray process was expanded to explain the oxidation in the HVOF spraying of stainless steel. It was concluded that for these oxygen-sensitive materials, maintaining a relatively low particle temperature throughout the spray process minimizes oxygen pickup by preventing an autocatalytic oxidation process and particle fragmentation upon impact. For the DJ Hybrid systems, understoichiometric fuel settings are selected, whereas for the JP-5000, oxygen-rich mixtures are preferred. More... »

PAGES

407-413

References to SciGraph publications

  • 1998-12. Oxidation in wire HVOF-sprayed steel in JOURNAL OF THERMAL SPRAY TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1361/105996300770349872

    DOI

    http://dx.doi.org/10.1361/105996300770349872

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006564419


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Helmut Schmidt University", 
              "id": "https://www.grid.ac/institutes/grid.49096.32", 
              "name": [
                "Universitat der Bundeswehr Hamburg, 22042, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dobler", 
            "givenName": "K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Helmut Schmidt University", 
              "id": "https://www.grid.ac/institutes/grid.49096.32", 
              "name": [
                "Universitat der Bundeswehr Hamburg, 22042, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kreye", 
            "givenName": "H.", 
            "id": "sg:person.012340620473.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340620473.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Helmut Schmidt University", 
              "id": "https://www.grid.ac/institutes/grid.49096.32", 
              "name": [
                "Universitat der Bundeswehr Hamburg, 22042, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwetzke", 
            "givenName": "R.", 
            "id": "sg:person.07416023774.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416023774.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1361/105996398770350765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044192727", 
              "https://doi.org/10.1361/105996398770350765"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-09", 
        "datePublishedReg": "2000-09-01", 
        "description": "The high velocity oxy-fuel (HVOF) spray process has been primarily used for the application of wear-resistant coatings and, with the introduction of new, more powerful systems, is being increasingly considered for producing corrosion-resistant coatings. In this study, the influence of various spray parameters for the JP-5000 and Diamond Jet (DJ) Hybrid systems on the oxidation of stainless steel 316L is characterized. Experimental results reveal that coating oxygen contents of less than 1 wt.% can be more easily attained with the JP-5000 than the DJ Hybrid systems because of the former\u2019s design. In both cases, however, the low particle temperatures necessary for low oxygen content coatings may impair bond and cohesive strength. Heat treating the coatings after processing reduces hardness, metallurgically enhances bond strength, and enables the spheroidization of oxide layers surrounding unmelted particles. An empirical model describing oxidation in the thermal spray process was expanded to explain the oxidation in the HVOF spraying of stainless steel. It was concluded that for these oxygen-sensitive materials, maintaining a relatively low particle temperature throughout the spray process minimizes oxygen pickup by preventing an autocatalytic oxidation process and particle fragmentation upon impact. For the DJ Hybrid systems, understoichiometric fuel settings are selected, whereas for the JP-5000, oxygen-rich mixtures are preferred.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1361/105996300770349872", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136229", 
            "issn": [
              "1059-9630", 
              "1544-1016"
            ], 
            "name": "Journal of Thermal Spray Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Oxidation of stainless steel in the high velocity oxy-fuel process", 
        "pagination": "407-413", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1f446b3395cbda8f725b1a36bfde142296372f3c005b842cf7b195d90d3484c9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1361/105996300770349872"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006564419"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1361/105996300770349872", 
          "https://app.dimensions.ai/details/publication/pub.1006564419"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1361/105996300770349872"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1361/105996300770349872'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1361/105996300770349872'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1361/105996300770349872'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1361/105996300770349872'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1361/105996300770349872 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N99632d87c8ae45558405158887ae87ef
    4 schema:citation sg:pub.10.1361/105996398770350765
    5 schema:datePublished 2000-09
    6 schema:datePublishedReg 2000-09-01
    7 schema:description The high velocity oxy-fuel (HVOF) spray process has been primarily used for the application of wear-resistant coatings and, with the introduction of new, more powerful systems, is being increasingly considered for producing corrosion-resistant coatings. In this study, the influence of various spray parameters for the JP-5000 and Diamond Jet (DJ) Hybrid systems on the oxidation of stainless steel 316L is characterized. Experimental results reveal that coating oxygen contents of less than 1 wt.% can be more easily attained with the JP-5000 than the DJ Hybrid systems because of the former’s design. In both cases, however, the low particle temperatures necessary for low oxygen content coatings may impair bond and cohesive strength. Heat treating the coatings after processing reduces hardness, metallurgically enhances bond strength, and enables the spheroidization of oxide layers surrounding unmelted particles. An empirical model describing oxidation in the thermal spray process was expanded to explain the oxidation in the HVOF spraying of stainless steel. It was concluded that for these oxygen-sensitive materials, maintaining a relatively low particle temperature throughout the spray process minimizes oxygen pickup by preventing an autocatalytic oxidation process and particle fragmentation upon impact. For the DJ Hybrid systems, understoichiometric fuel settings are selected, whereas for the JP-5000, oxygen-rich mixtures are preferred.
    8 schema:genre research_article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nb0edf3a772ed44cca377c3399a745043
    12 Nf98f73f0453d4327be560a05f2fdfc54
    13 sg:journal.1136229
    14 schema:name Oxidation of stainless steel in the high velocity oxy-fuel process
    15 schema:pagination 407-413
    16 schema:productId N1233b6739e4c4c86903f003ee8ec9772
    17 N191a7dda95cb4c089d72bd8638c175e8
    18 N27ff632dff1a4fa3ae6eeed4a214d297
    19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006564419
    20 https://doi.org/10.1361/105996300770349872
    21 schema:sdDatePublished 2019-04-10T14:57
    22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    23 schema:sdPublisher N6cde9f354da04cda91dde9deb25bbe97
    24 schema:url http://link.springer.com/10.1361/105996300770349872
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset articles
    27 rdf:type schema:ScholarlyArticle
    28 N098ece01c2e740b3b2d8bc0e69f705a5 rdf:first sg:person.07416023774.68
    29 rdf:rest rdf:nil
    30 N1233b6739e4c4c86903f003ee8ec9772 schema:name readcube_id
    31 schema:value 1f446b3395cbda8f725b1a36bfde142296372f3c005b842cf7b195d90d3484c9
    32 rdf:type schema:PropertyValue
    33 N191a7dda95cb4c089d72bd8638c175e8 schema:name dimensions_id
    34 schema:value pub.1006564419
    35 rdf:type schema:PropertyValue
    36 N27ff632dff1a4fa3ae6eeed4a214d297 schema:name doi
    37 schema:value 10.1361/105996300770349872
    38 rdf:type schema:PropertyValue
    39 N597909e933984b889bee024c61faace4 schema:affiliation https://www.grid.ac/institutes/grid.49096.32
    40 schema:familyName Dobler
    41 schema:givenName K.
    42 rdf:type schema:Person
    43 N6cde9f354da04cda91dde9deb25bbe97 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N99632d87c8ae45558405158887ae87ef rdf:first N597909e933984b889bee024c61faace4
    46 rdf:rest Ne286caeca80948058398c5c2ae88d8ea
    47 Nb0edf3a772ed44cca377c3399a745043 schema:issueNumber 3
    48 rdf:type schema:PublicationIssue
    49 Ne286caeca80948058398c5c2ae88d8ea rdf:first sg:person.012340620473.12
    50 rdf:rest N098ece01c2e740b3b2d8bc0e69f705a5
    51 Nf98f73f0453d4327be560a05f2fdfc54 schema:volumeNumber 9
    52 rdf:type schema:PublicationVolume
    53 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Engineering
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Materials Engineering
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1136229 schema:issn 1059-9630
    60 1544-1016
    61 schema:name Journal of Thermal Spray Technology
    62 rdf:type schema:Periodical
    63 sg:person.012340620473.12 schema:affiliation https://www.grid.ac/institutes/grid.49096.32
    64 schema:familyName Kreye
    65 schema:givenName H.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340620473.12
    67 rdf:type schema:Person
    68 sg:person.07416023774.68 schema:affiliation https://www.grid.ac/institutes/grid.49096.32
    69 schema:familyName Schwetzke
    70 schema:givenName R.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416023774.68
    72 rdf:type schema:Person
    73 sg:pub.10.1361/105996398770350765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044192727
    74 https://doi.org/10.1361/105996398770350765
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.49096.32 schema:alternateName Helmut Schmidt University
    77 schema:name Universitat der Bundeswehr Hamburg, 22042, Hamburg, Germany
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...