Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India* View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-02

AUTHORS

Deon Filmer, Lant H. Pritchett

ABSTRACT

Using data from India, we estimate the relationship between household wealth and children's school enrollment. We proxy wealth by constructing a linear index from asset ownership indicators, using principal-components analysis to derive weights. In Indian data this index is robust to the assets included, and produces internally coherent results. State-level results correspond well to independent data on per capita output and poverty. To validate the method and to show that the asset index predicts enrollments as accurately as expenditures, or more so, we use data sets from Indonesia, Pakistan, and Nepal that contain information on both expenditures and assets. The results show large, variable wealth gaps in children's enrollment across Indian states. On average a "rich" child is 31 percentage points more likely to be enrolled than a "poor" child, but this gap varies from only 4.6 percentage points in Kerala to 38.2 in Uttar Pradesh and 42.6 in Bihar. More... »

PAGES

115-132

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1353/dem.2001.0003

DOI

http://dx.doi.org/10.1353/dem.2001.0003

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028396354

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11227840


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Educational Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Family Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Financing, Personal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Income", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "India", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indonesia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Econometric", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nepal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ownership", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pakistan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poverty", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rural Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Socioeconomic Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urban Population", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "World Bank Group", 
          "id": "https://www.grid.ac/institutes/grid.484609.7", 
          "name": [
            "Development Research Group, The World Bank, 1818 H Street NW, 20433, Washington, DC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filmer", 
        "givenName": "Deon", 
        "id": "sg:person.016261774327.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261774327.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "John F. Kennedy School of Government, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pritchett", 
        "givenName": "Lant H.", 
        "id": "sg:person.07401650667.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401650667.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jcec.1998.1526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006576627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1728-4457.1999.00085.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013070326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2648118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013570486", 
          "https://doi.org/10.2307/2648118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3878(97)00041-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026211336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1062-9769(97)90005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043411667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-750x(00)00075-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051567177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/wber/13.2.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060064391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/jep.12.1.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064529888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2235108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069848629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2235108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069848629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-02", 
    "datePublishedReg": "2001-02-01", 
    "description": "Using data from India, we estimate the relationship between household wealth and children's school enrollment. We proxy wealth by constructing a linear index from asset ownership indicators, using principal-components analysis to derive weights. In Indian data this index is robust to the assets included, and produces internally coherent results. State-level results correspond well to independent data on per capita output and poverty. To validate the method and to show that the asset index predicts enrollments as accurately as expenditures, or more so, we use data sets from Indonesia, Pakistan, and Nepal that contain information on both expenditures and assets. The results show large, variable wealth gaps in children's enrollment across Indian states. On average a \"rich\" child is 31 percentage points more likely to be enrolled than a \"poor\" child, but this gap varies from only 4.6 percentage points in Kerala to 38.2 in Uttar Pradesh and 42.6 in Bihar.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1353/dem.2001.0003", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1012733", 
        "issn": [
          "0070-3370", 
          "1533-7790"
        ], 
        "name": "Demography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Estimating Wealth Effects Without Expenditure Data\u2014Or Tears: An Application To Educational Enrollments In States Of India*", 
    "pagination": "115-132", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87463faf6e1a956b8222403b2b0d12bf34c3f3a12a45ecb5d37446b3d85b4f40"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11227840"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0226703"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1353/dem.2001.0003"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028396354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1353/dem.2001.0003", 
      "https://app.dimensions.ai/details/publication/pub.1028396354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1353/dem.2001.0003"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1353/dem.2001.0003'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1353/dem.2001.0003'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1353/dem.2001.0003'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1353/dem.2001.0003'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      58 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1353/dem.2001.0003 schema:about N03d2ea76898e4c8a9ee43c0061ed83a1
2 N048733e7fd3b4a69b27bd5582bfaa03e
3 N1b751607775749a5a64eb8ebe3b68624
4 N2d059bdae8fa4d78a91ca9dbaacc8d56
5 N33ebf3c33ffa41a89a37a632f754be0d
6 N4d3e0d13512e4efca9f7dba3147d1f3b
7 N53059e183e0e4693b1f5663837407a8b
8 N5734c0ed1f1a48a3a86d9eaa301ae8d6
9 N609ea1949f68406fb9d525736f60bff8
10 N62436de8c6c5401383a31777b6651e01
11 N6645b95411164b2e867ec3a7504f1f1b
12 N7f142a47710d4c01a2cf04f433547555
13 N85b441dacd594ffb8d26d56e537caddf
14 N93518781e2f04ed8877fa6e3a6c6d99f
15 N9938af220e2042f1a6895a87d7cb384f
16 Nadc8c3ce797944ec80e6e3d1c095889e
17 Nb7858166a5da4e36b6e750c267a5251a
18 Ncf79cdb4816f4774b17ad3dce06f2288
19 Nd6fda4267943489bbc6a3aa746935aa5
20 Nf94d9c46bbb84ab1962d62538271e0b0
21 anzsrc-for:14
22 anzsrc-for:1402
23 schema:author N8dc002d7e30c41ffb721f16f4f7d795a
24 schema:citation sg:pub.10.2307/2648118
25 https://doi.org/10.1006/jcec.1998.1526
26 https://doi.org/10.1016/s0304-3878(97)00041-2
27 https://doi.org/10.1016/s0305-750x(00)00075-9
28 https://doi.org/10.1016/s1062-9769(97)90005-3
29 https://doi.org/10.1093/wber/13.2.211
30 https://doi.org/10.1111/j.1728-4457.1999.00085.x
31 https://doi.org/10.1257/jep.12.1.187
32 https://doi.org/10.2307/2235108
33 schema:datePublished 2001-02
34 schema:datePublishedReg 2001-02-01
35 schema:description Using data from India, we estimate the relationship between household wealth and children's school enrollment. We proxy wealth by constructing a linear index from asset ownership indicators, using principal-components analysis to derive weights. In Indian data this index is robust to the assets included, and produces internally coherent results. State-level results correspond well to independent data on per capita output and poverty. To validate the method and to show that the asset index predicts enrollments as accurately as expenditures, or more so, we use data sets from Indonesia, Pakistan, and Nepal that contain information on both expenditures and assets. The results show large, variable wealth gaps in children's enrollment across Indian states. On average a "rich" child is 31 percentage points more likely to be enrolled than a "poor" child, but this gap varies from only 4.6 percentage points in Kerala to 38.2 in Uttar Pradesh and 42.6 in Bihar.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N6349fd9d06c24bcf978baa6d2903f499
40 Nb06aa51741b54714a1dfcc78abec4667
41 sg:journal.1012733
42 schema:name Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India*
43 schema:pagination 115-132
44 schema:productId N13d656d90c534dc7942fc65302b89337
45 N1f20c54b922e46c19e79753c1854f3b5
46 N256b57c2de1c44fd8b556c4222c98fc5
47 N4d65e28b64164f2d9b51ecf61ae22d22
48 N9e75b294a4c4451e95012b7330314f15
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028396354
50 https://doi.org/10.1353/dem.2001.0003
51 schema:sdDatePublished 2019-04-10T15:48
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N54003eabd4e54301b2dbaa19595b090a
54 schema:url http://link.springer.com/10.1353/dem.2001.0003
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N03d2ea76898e4c8a9ee43c0061ed83a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Rural Population
60 rdf:type schema:DefinedTerm
61 N048733e7fd3b4a69b27bd5582bfaa03e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Humans
63 rdf:type schema:DefinedTerm
64 N13d656d90c534dc7942fc65302b89337 schema:name pubmed_id
65 schema:value 11227840
66 rdf:type schema:PropertyValue
67 N1b751607775749a5a64eb8ebe3b68624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Financing, Personal
69 rdf:type schema:DefinedTerm
70 N1f20c54b922e46c19e79753c1854f3b5 schema:name dimensions_id
71 schema:value pub.1028396354
72 rdf:type schema:PropertyValue
73 N256b57c2de1c44fd8b556c4222c98fc5 schema:name doi
74 schema:value 10.1353/dem.2001.0003
75 rdf:type schema:PropertyValue
76 N2d059bdae8fa4d78a91ca9dbaacc8d56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Ownership
78 rdf:type schema:DefinedTerm
79 N33ebf3c33ffa41a89a37a632f754be0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Child
81 rdf:type schema:DefinedTerm
82 N4d3e0d13512e4efca9f7dba3147d1f3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Educational Status
84 rdf:type schema:DefinedTerm
85 N4d65e28b64164f2d9b51ecf61ae22d22 schema:name readcube_id
86 schema:value 87463faf6e1a956b8222403b2b0d12bf34c3f3a12a45ecb5d37446b3d85b4f40
87 rdf:type schema:PropertyValue
88 N53059e183e0e4693b1f5663837407a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Pakistan
90 rdf:type schema:DefinedTerm
91 N54003eabd4e54301b2dbaa19595b090a schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N5734c0ed1f1a48a3a86d9eaa301ae8d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Male
95 rdf:type schema:DefinedTerm
96 N609ea1949f68406fb9d525736f60bff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Income
98 rdf:type schema:DefinedTerm
99 N62436de8c6c5401383a31777b6651e01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Family Characteristics
101 rdf:type schema:DefinedTerm
102 N6349fd9d06c24bcf978baa6d2903f499 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N6645b95411164b2e867ec3a7504f1f1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Urban Population
106 rdf:type schema:DefinedTerm
107 N7f142a47710d4c01a2cf04f433547555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Female
109 rdf:type schema:DefinedTerm
110 N85b441dacd594ffb8d26d56e537caddf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name India
112 rdf:type schema:DefinedTerm
113 N8dc002d7e30c41ffb721f16f4f7d795a rdf:first sg:person.016261774327.41
114 rdf:rest Nf25bd15974284e0e94229f64889cf8ac
115 N93518781e2f04ed8877fa6e3a6c6d99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Socioeconomic Factors
117 rdf:type schema:DefinedTerm
118 N9938af220e2042f1a6895a87d7cb384f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Indonesia
120 rdf:type schema:DefinedTerm
121 N9e75b294a4c4451e95012b7330314f15 schema:name nlm_unique_id
122 schema:value 0226703
123 rdf:type schema:PropertyValue
124 Nadc8c3ce797944ec80e6e3d1c095889e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Models, Econometric
126 rdf:type schema:DefinedTerm
127 Nb06aa51741b54714a1dfcc78abec4667 schema:volumeNumber 38
128 rdf:type schema:PublicationVolume
129 Nb7858166a5da4e36b6e750c267a5251a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Nepal
131 rdf:type schema:DefinedTerm
132 Ncf79cdb4816f4774b17ad3dce06f2288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Multivariate Analysis
134 rdf:type schema:DefinedTerm
135 Nd6fda4267943489bbc6a3aa746935aa5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Poverty
137 rdf:type schema:DefinedTerm
138 Nf25bd15974284e0e94229f64889cf8ac rdf:first sg:person.07401650667.86
139 rdf:rest rdf:nil
140 Nf94d9c46bbb84ab1962d62538271e0b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Adolescent
142 rdf:type schema:DefinedTerm
143 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
144 schema:name Economics
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
147 schema:name Applied Economics
148 rdf:type schema:DefinedTerm
149 sg:journal.1012733 schema:issn 0070-3370
150 1533-7790
151 schema:name Demography
152 rdf:type schema:Periodical
153 sg:person.016261774327.41 schema:affiliation https://www.grid.ac/institutes/grid.484609.7
154 schema:familyName Filmer
155 schema:givenName Deon
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016261774327.41
157 rdf:type schema:Person
158 sg:person.07401650667.86 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
159 schema:familyName Pritchett
160 schema:givenName Lant H.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401650667.86
162 rdf:type schema:Person
163 sg:pub.10.2307/2648118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013570486
164 https://doi.org/10.2307/2648118
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1006/jcec.1998.1526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006576627
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0304-3878(97)00041-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026211336
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0305-750x(00)00075-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051567177
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s1062-9769(97)90005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043411667
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/wber/13.2.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060064391
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1728-4457.1999.00085.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013070326
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1257/jep.12.1.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064529888
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2307/2235108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069848629
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
183 schema:name John F. Kennedy School of Government, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.484609.7 schema:alternateName World Bank Group
186 schema:name Development Research Group, The World Bank, 1818 H Street NW, 20433, Washington, DC
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...