Parametric Analysis of Tgvs. Composition Behavior in Poly(4-hydroxystyrene) Blends Using both Evolutionary Fitting and Classical Methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1996-03

AUTHORS

Angel Navia, Araceli Sanchis, Margarita González Prolongo, Rosa Marína Masegosa

ABSTRACT

An evolutive fitting method has been devoted to fit the most usual equatrons that predict Tg vs. composition behavior of polymer blends. This method has been compared and tested vs. two “more traditional” fitting methods. Tg vs. composition results of poly(4-hydroxystyrene) and its blends with poly(methyl acrylate), poly(ethyl acrylate), and poly(vinyl acetate) have been analyzed in terms of different equations. More... »

PAGES

217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1295/polymj.28.217

DOI

http://dx.doi.org/10.1295/polymj.28.217

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050127017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Navia", 
        "givenName": "Angel", 
        "type": "Person"
      }, 
      {
        "familyName": "Sanchis", 
        "givenName": "Araceli", 
        "id": "sg:person.01360744414.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360744414.16"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Prolongo", 
        "givenName": "Margarita Gonz\u00e1lez", 
        "id": "sg:person.011144062763.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011144062763.72"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Masegosa", 
        "givenName": "Rosa Mar\u00edna", 
        "id": "sg:person.015534333317.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534333317.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01519799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005434738", 
          "https://doi.org/10.1007/bf01519799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/macp.1988.021890911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006165257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(88)90203-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006238458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(88)90203-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006238458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-3057(94)90005-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008837602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-3057(94)90005-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008837602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.5010020901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017717471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.5010020901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017717471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1983.070280409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020010145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00550584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032082516", 
          "https://doi.org/10.1007/bf00550584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00550584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032082516", 
          "https://doi.org/10.1007/bf00550584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01499818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035059773", 
          "https://doi.org/10.1007/bf01499818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1295/polymj.27.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047574890", 
          "https://doi.org/10.1295/polymj.27.10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(91)90591-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048409896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(91)90591-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048409896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/05704928408060422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051222806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00112a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056178171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00139a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056179591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00192a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056182683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00195a087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056183048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00200a052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056183390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma60061a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056201159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma60066a018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056201389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.325792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057926074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/48.180302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061175858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.6.2.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731709"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-03", 
    "datePublishedReg": "1996-03-01", 
    "description": "An evolutive fitting method has been devoted to fit the most usual equatrons that predict Tg vs. composition behavior of polymer blends. This method has been compared and tested vs. two \u201cmore traditional\u201d fitting methods. Tg vs. composition results of poly(4-hydroxystyrene) and its blends with poly(methyl acrylate), poly(ethyl acrylate), and poly(vinyl acetate) have been analyzed in terms of different equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1295/polymj.28.217", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043822", 
        "issn": [
          "0032-3896", 
          "1349-0540"
        ], 
        "name": "Polymer Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Parametric Analysis of Tgvs. Composition Behavior in Poly(4-hydroxystyrene) Blends Using both Evolutionary Fitting and Classical Methods", 
    "pagination": "217", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eeca52127673e7966302c01a903e182d2795a87776f899e64ef2e26d801f87d4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1295/polymj.28.217"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050127017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1295/polymj.28.217", 
      "https://app.dimensions.ai/details/publication/pub.1050127017"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/pj199638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1295/polymj.28.217'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1295/polymj.28.217'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1295/polymj.28.217'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1295/polymj.28.217'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1295/polymj.28.217 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N092dd2264d9647658dccf2fc74f0bc45
4 schema:citation sg:pub.10.1007/bf00550584
5 sg:pub.10.1007/bf01499818
6 sg:pub.10.1007/bf01519799
7 sg:pub.10.1295/polymj.27.10
8 https://doi.org/10.1002/app.1983.070280409
9 https://doi.org/10.1002/jctb.5010020901
10 https://doi.org/10.1002/macp.1988.021890911
11 https://doi.org/10.1016/0014-3057(94)90005-1
12 https://doi.org/10.1016/0032-3861(88)90203-0
13 https://doi.org/10.1016/0032-3861(91)90591-6
14 https://doi.org/10.1021/ma00112a014
15 https://doi.org/10.1021/ma00139a006
16 https://doi.org/10.1021/ma00192a013
17 https://doi.org/10.1021/ma00195a087
18 https://doi.org/10.1021/ma00200a052
19 https://doi.org/10.1021/ma60061a021
20 https://doi.org/10.1021/ma60066a018
21 https://doi.org/10.1063/1.325792
22 https://doi.org/10.1080/05704928408060422
23 https://doi.org/10.1109/48.180302
24 https://doi.org/10.1287/opre.6.2.244
25 schema:datePublished 1996-03
26 schema:datePublishedReg 1996-03-01
27 schema:description An evolutive fitting method has been devoted to fit the most usual equatrons that predict Tg vs. composition behavior of polymer blends. This method has been compared and tested vs. two “more traditional” fitting methods. Tg vs. composition results of poly(4-hydroxystyrene) and its blends with poly(methyl acrylate), poly(ethyl acrylate), and poly(vinyl acetate) have been analyzed in terms of different equations.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nb3720f3ca1f04ff0841a94af5c2d1035
32 Nb7cd06ed21674b08862b8082544f0c99
33 sg:journal.1043822
34 schema:name Parametric Analysis of Tgvs. Composition Behavior in Poly(4-hydroxystyrene) Blends Using both Evolutionary Fitting and Classical Methods
35 schema:pagination 217
36 schema:productId N0ef588f4e094444cbf96a56c72586ac8
37 N2b5c8728117d49c489ceb052ceb40406
38 Nc3f9dd179b58477dadb86e6a5926e353
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050127017
40 https://doi.org/10.1295/polymj.28.217
41 schema:sdDatePublished 2019-04-10T21:25
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N0ff0a9b0c5a046ce8394aaa37dcf9e3a
44 schema:url https://www.nature.com/articles/pj199638
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N092dd2264d9647658dccf2fc74f0bc45 rdf:first N2a1cda9c5d244324b33b3a8e7a59e408
49 rdf:rest N5fb49fa9af0d41ceb2089f1da86988e2
50 N0c43d677faf14e5d83b7ac35bc521238 rdf:first sg:person.015534333317.28
51 rdf:rest rdf:nil
52 N0ef588f4e094444cbf96a56c72586ac8 schema:name dimensions_id
53 schema:value pub.1050127017
54 rdf:type schema:PropertyValue
55 N0ff0a9b0c5a046ce8394aaa37dcf9e3a schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N2a1cda9c5d244324b33b3a8e7a59e408 schema:familyName Navia
58 schema:givenName Angel
59 rdf:type schema:Person
60 N2b5c8728117d49c489ceb052ceb40406 schema:name readcube_id
61 schema:value eeca52127673e7966302c01a903e182d2795a87776f899e64ef2e26d801f87d4
62 rdf:type schema:PropertyValue
63 N5fb49fa9af0d41ceb2089f1da86988e2 rdf:first sg:person.01360744414.16
64 rdf:rest Nda5aa03bdb024204bef1e4612990151b
65 Nb3720f3ca1f04ff0841a94af5c2d1035 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 Nb7cd06ed21674b08862b8082544f0c99 schema:volumeNumber 28
68 rdf:type schema:PublicationVolume
69 Nc3f9dd179b58477dadb86e6a5926e353 schema:name doi
70 schema:value 10.1295/polymj.28.217
71 rdf:type schema:PropertyValue
72 Nda5aa03bdb024204bef1e4612990151b rdf:first sg:person.011144062763.72
73 rdf:rest N0c43d677faf14e5d83b7ac35bc521238
74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
75 schema:name Chemical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
78 schema:name Macromolecular and Materials Chemistry
79 rdf:type schema:DefinedTerm
80 sg:journal.1043822 schema:issn 0032-3896
81 1349-0540
82 schema:name Polymer Journal
83 rdf:type schema:Periodical
84 sg:person.011144062763.72 schema:familyName Prolongo
85 schema:givenName Margarita González
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011144062763.72
87 rdf:type schema:Person
88 sg:person.01360744414.16 schema:familyName Sanchis
89 schema:givenName Araceli
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360744414.16
91 rdf:type schema:Person
92 sg:person.015534333317.28 schema:familyName Masegosa
93 schema:givenName Rosa Marína
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534333317.28
95 rdf:type schema:Person
96 sg:pub.10.1007/bf00550584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032082516
97 https://doi.org/10.1007/bf00550584
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01499818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035059773
100 https://doi.org/10.1007/bf01499818
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01519799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005434738
103 https://doi.org/10.1007/bf01519799
104 rdf:type schema:CreativeWork
105 sg:pub.10.1295/polymj.27.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047574890
106 https://doi.org/10.1295/polymj.27.10
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/app.1983.070280409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020010145
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/jctb.5010020901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017717471
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/macp.1988.021890911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006165257
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0014-3057(94)90005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008837602
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0032-3861(88)90203-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006238458
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0032-3861(91)90591-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048409896
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/ma00112a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056178171
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ma00139a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056179591
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/ma00192a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056182683
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ma00195a087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056183048
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/ma00200a052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056183390
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/ma60061a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056201159
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/ma60066a018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056201389
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.325792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057926074
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/05704928408060422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051222806
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/48.180302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061175858
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1287/opre.6.2.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731709
141 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...