Hypertension Is the Most Common Component of Metabolic Syndrome and the Greatest Contributor to Carotid Arteriosclerosis in Apparently Healthy Japanese ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005

AUTHORS

Nobukazu Ishizaka, Yuko Ishizaka, Ei-Ichi Toda, Hideki Hashimoto, Ryozo Nagai, Minoru Yamakado

ABSTRACT

The cluster of metabolic and hemodynamic risk factors known as metabolic syndrome is known to be a risk factor for ischemic cardiovascular diseases and stroke. By analyzing the cross-sectional data from 8,144 individuals (age 19-88 years) who underwent general health screening, we have investigated the prevalence of metabolic syndrome, as diagnosed by modified-National Cholesterol Education Program (NCEP) criteria corresponding to the following five categories: triglycerides > or = 150 mg/dl; high density lipoprotein (HDL)-cholesterol < 40 mg/dl in men or < 50 mg/dl in women; fasting plasma glucose > or = 110 mg/dl; systolic/diastolic blood pressure > or = 130/85 mmHg; and body mass index > 25 kg/m2. We found that the prevalence of metabolic syndrome was 19% in men and 7% in women. After adjustment for age, metabolic syndrome was found to be significantly more prevalent in men than in women, with an odds ratio of 3.08 (95% confidence interval [CI] 2.62-3.61, p < 0.0001). Among the five metabolic/hemodynamic risk factor components, hypertension was observed most frequently in individuals with metabolic syndrome, at 85% in men and 87% in women. In addition, multivariate logistic regression analysis adjusted for age, sex, serum total cholesterol levels, and smoking status showed that hypertension possessed the greatest odds ratio (1.43, 95% CI 1.27-1.60) for carotid plaque among the metabolic/hemodynamic risk factors. These data emphasize the importance of controlling blood pressure for reducing the risk of both metabolic syndrome and carotid arteriosclerosis in apparently healthy individuals. More... »

PAGES

hr20055

Identifiers

URI

http://scigraph.springernature.com/pub.10.1291/hypres.28.27

DOI

http://dx.doi.org/10.1291/hypres.28.27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031910636

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15969252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishizaka", 
        "givenName": "Nobukazu", 
        "id": "sg:person.01003460567.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003460567.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishizaka", 
        "givenName": "Yuko", 
        "id": "sg:person.0644344022.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644344022.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toda", 
        "givenName": "Ei-Ichi", 
        "id": "sg:person.01236433170.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236433170.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Teikyo University", 
          "id": "https://www.grid.ac/institutes/grid.264706.1", 
          "name": [
            "Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Hideki", 
        "id": "sg:person.01031610563.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031610563.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagai", 
        "givenName": "Ryozo", 
        "id": "sg:person.0772176333.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitsui Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415980.1", 
          "name": [
            "Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamakado", 
        "givenName": "Minoru", 
        "id": "sg:person.0760572422.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760572422.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2165/00129784-200202030-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329220", 
          "https://doi.org/10.2165/00129784-200202030-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00129784-200202030-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329220", 
          "https://doi.org/10.2165/00129784-200202030-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000050142.09911.0b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002305209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000050142.09911.0b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002305209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000108926.04022.0c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002947402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199917020-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003918995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199917020-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003918995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199917020-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003918995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.26.4.1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005366074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.327.7406.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005630519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007277578", 
          "https://doi.org/10.1038/sj.ijo.0802381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007277578", 
          "https://doi.org/10.1038/sj.ijo.0802381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00129784-200202010-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009357326", 
          "https://doi.org/10.2165/00129784-200202010-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00129784-200202010-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009357326", 
          "https://doi.org/10.2165/00129784-200202010-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000080897.52664.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010001455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2003.09.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013200686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12151-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014693238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)12151-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014693238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabres.2003.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023363656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.10.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033608253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.285.19.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033739611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2003.10.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034993926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(03)00193-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036472989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(03)00193-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036472989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000103629.01745.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037535700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.0000103629.01745.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037535700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.52.8.2160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038452480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2003.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039734139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000045671.62860.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042332717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1291/hypres.25.811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044034622", 
          "https://doi.org/10.1291/hypres.25.811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2004.01245.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047359178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1291/hypres.26.945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048729544", 
          "https://doi.org/10.1291/hypres.26.945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.164.10.1066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049444740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The cluster of metabolic and hemodynamic risk factors known as metabolic syndrome is known to be a risk factor for ischemic cardiovascular diseases and stroke. By analyzing the cross-sectional data from 8,144 individuals (age 19-88 years) who underwent general health screening, we have investigated the prevalence of metabolic syndrome, as diagnosed by modified-National Cholesterol Education Program (NCEP) criteria corresponding to the following five categories: triglycerides > or = 150 mg/dl; high density lipoprotein (HDL)-cholesterol < 40 mg/dl in men or < 50 mg/dl in women; fasting plasma glucose > or = 110 mg/dl; systolic/diastolic blood pressure > or = 130/85 mmHg; and body mass index > 25 kg/m2. We found that the prevalence of metabolic syndrome was 19% in men and 7% in women. After adjustment for age, metabolic syndrome was found to be significantly more prevalent in men than in women, with an odds ratio of 3.08 (95% confidence interval [CI] 2.62-3.61, p < 0.0001). Among the five metabolic/hemodynamic risk factor components, hypertension was observed most frequently in individuals with metabolic syndrome, at 85% in men and 87% in women. In addition, multivariate logistic regression analysis adjusted for age, sex, serum total cholesterol levels, and smoking status showed that hypertension possessed the greatest odds ratio (1.43, 95% CI 1.27-1.60) for carotid plaque among the metabolic/hemodynamic risk factors. These data emphasize the importance of controlling blood pressure for reducing the risk of both metabolic syndrome and carotid arteriosclerosis in apparently healthy individuals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1291/hypres.28.27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Hypertension Is the Most Common Component of Metabolic Syndrome and the Greatest Contributor to Carotid Arteriosclerosis in Apparently Healthy Japanese Individuals", 
    "pagination": "hr20055", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9803c104fa8e6ee4e5685a968ab0eb870914ab4dd40259bf8e0c833ccb43ce9c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15969252"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9307690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1291/hypres.28.27"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031910636"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1291/hypres.28.27", 
      "https://app.dimensions.ai/details/publication/pub.1031910636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/hr20055"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1291/hypres.28.27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1291/hypres.28.27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1291/hypres.28.27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1291/hypres.28.27'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      68 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1291/hypres.28.27 schema:about N1710a350ef814fef9a64f5c60bc274d8
2 N355a7219c9cf4084856ed247ad565e59
3 N4d9e0e0f46be40c2877d30ad8ec712e4
4 N7f34e0e5769e4413a03d90b97e315450
5 N89076d8ffc524c51be97cf34b67f3536
6 N9288cb329f164bb380d382015100777e
7 N9a757c4f7dfd4c0690eb0388343d65cc
8 N9c429b504bf64d04807f6912ce224d20
9 Nb41324f5753b40a38fad782c8b0bd4e8
10 Nbbd5256d746b4570b1a84a7e1d606395
11 Ncd61374960d340aaa434acf0bb6dc702
12 Nefc95eccb1804435acbe01590a767264
13 Nfd8e4470d2c3463da32dfb3f609f2e17
14 Nff944dbc47114a8e8c8facfed8da7ba5
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author Nabac5f9ddd0b41af974a16a8a0b13165
18 schema:citation sg:pub.10.1007/bf00280883
19 sg:pub.10.1038/sj.ijo.0802381
20 sg:pub.10.1291/hypres.25.811
21 sg:pub.10.1291/hypres.26.945
22 sg:pub.10.2165/00129784-200202010-00003
23 sg:pub.10.2165/00129784-200202030-00002
24 https://doi.org/10.1001/archinte.164.10.1066
25 https://doi.org/10.1001/jama.285.19.2486
26 https://doi.org/10.1016/j.atherosclerosis.2003.10.007
27 https://doi.org/10.1016/j.diabres.2003.12.007
28 https://doi.org/10.1016/j.jacc.2003.09.063
29 https://doi.org/10.1016/j.jacc.2003.10.061
30 https://doi.org/10.1016/s0140-6736(03)12151-4
31 https://doi.org/10.1016/s0735-1097(03)00193-1
32 https://doi.org/10.1097/00004872-199917020-00001
33 https://doi.org/10.1111/j.1464-5491.2004.01245.x
34 https://doi.org/10.1136/bmj.327.7406.61
35 https://doi.org/10.1161/01.atv.0000050142.09911.0b
36 https://doi.org/10.1161/01.cir.0000045671.62860.98
37 https://doi.org/10.1161/01.cir.0000080897.52664.94
38 https://doi.org/10.1161/01.cir.0000108926.04022.0c
39 https://doi.org/10.1161/01.hyp.0000103629.01745.59
40 https://doi.org/10.2337/diabetes.52.8.2160
41 https://doi.org/10.2337/diacare.26.4.1251
42 https://doi.org/10.5551/jat.10.176
43 schema:datePublished 2005
44 schema:datePublishedReg 2005-01-01
45 schema:description The cluster of metabolic and hemodynamic risk factors known as metabolic syndrome is known to be a risk factor for ischemic cardiovascular diseases and stroke. By analyzing the cross-sectional data from 8,144 individuals (age 19-88 years) who underwent general health screening, we have investigated the prevalence of metabolic syndrome, as diagnosed by modified-National Cholesterol Education Program (NCEP) criteria corresponding to the following five categories: triglycerides > or = 150 mg/dl; high density lipoprotein (HDL)-cholesterol < 40 mg/dl in men or < 50 mg/dl in women; fasting plasma glucose > or = 110 mg/dl; systolic/diastolic blood pressure > or = 130/85 mmHg; and body mass index > 25 kg/m2. We found that the prevalence of metabolic syndrome was 19% in men and 7% in women. After adjustment for age, metabolic syndrome was found to be significantly more prevalent in men than in women, with an odds ratio of 3.08 (95% confidence interval [CI] 2.62-3.61, p < 0.0001). Among the five metabolic/hemodynamic risk factor components, hypertension was observed most frequently in individuals with metabolic syndrome, at 85% in men and 87% in women. In addition, multivariate logistic regression analysis adjusted for age, sex, serum total cholesterol levels, and smoking status showed that hypertension possessed the greatest odds ratio (1.43, 95% CI 1.27-1.60) for carotid plaque among the metabolic/hemodynamic risk factors. These data emphasize the importance of controlling blood pressure for reducing the risk of both metabolic syndrome and carotid arteriosclerosis in apparently healthy individuals.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N27bd7864c0c2408ca151ff8dc75db100
50 Nb5a476254fd246d798dd5d7421a2ab5a
51 sg:journal.1313717
52 schema:name Hypertension Is the Most Common Component of Metabolic Syndrome and the Greatest Contributor to Carotid Arteriosclerosis in Apparently Healthy Japanese Individuals
53 schema:pagination hr20055
54 schema:productId N068e91e5d2eb45a0b6262c49c660328b
55 N1b9cff992f304e50bb6e86f3f3f21f77
56 N4ef08b36362d47caad0f44d1a25ec851
57 Ndb23e744e5d14ae19e1cf2518f3d8bcd
58 Ne06aa1b20959411b83bd5b5a2dd0ac85
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031910636
60 https://doi.org/10.1291/hypres.28.27
61 schema:sdDatePublished 2019-04-10T14:48
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N411d98a9665a44bdbf84da8766eb8f02
64 schema:url http://www.nature.com/articles/hr20055
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N068e91e5d2eb45a0b6262c49c660328b schema:name nlm_unique_id
69 schema:value 9307690
70 rdf:type schema:PropertyValue
71 N1710a350ef814fef9a64f5c60bc274d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Japan
73 rdf:type schema:DefinedTerm
74 N1b9cff992f304e50bb6e86f3f3f21f77 schema:name readcube_id
75 schema:value 9803c104fa8e6ee4e5685a968ab0eb870914ab4dd40259bf8e0c833ccb43ce9c
76 rdf:type schema:PropertyValue
77 N27bd7864c0c2408ca151ff8dc75db100 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N346db8e691eb4c35a1caeb3e795231f3 rdf:first sg:person.0772176333.38
80 rdf:rest Na29200a7574a40e3ba073bb9982ce72c
81 N355a7219c9cf4084856ed247ad565e59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Prevalence
83 rdf:type schema:DefinedTerm
84 N411d98a9665a44bdbf84da8766eb8f02 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N4d9e0e0f46be40c2877d30ad8ec712e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Middle Aged
88 rdf:type schema:DefinedTerm
89 N4ef08b36362d47caad0f44d1a25ec851 schema:name dimensions_id
90 schema:value pub.1031910636
91 rdf:type schema:PropertyValue
92 N58f96b8fe7b740859932b7bdcb97e4d2 rdf:first sg:person.01236433170.61
93 rdf:rest Nfdacbb72706d433ab48c4f6f54db73fe
94 N7f34e0e5769e4413a03d90b97e315450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Hypertension
96 rdf:type schema:DefinedTerm
97 N89076d8ffc524c51be97cf34b67f3536 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Risk Factors
99 rdf:type schema:DefinedTerm
100 N9288cb329f164bb380d382015100777e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Cross-Sectional Studies
102 rdf:type schema:DefinedTerm
103 N99d2f6f232da45938b7d69c5068da7c5 rdf:first sg:person.0644344022.81
104 rdf:rest N58f96b8fe7b740859932b7bdcb97e4d2
105 N9a757c4f7dfd4c0690eb0388343d65cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 N9c429b504bf64d04807f6912ce224d20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Carotid Artery Diseases
110 rdf:type schema:DefinedTerm
111 Na29200a7574a40e3ba073bb9982ce72c rdf:first sg:person.0760572422.12
112 rdf:rest rdf:nil
113 Nabac5f9ddd0b41af974a16a8a0b13165 rdf:first sg:person.01003460567.51
114 rdf:rest N99d2f6f232da45938b7d69c5068da7c5
115 Nb41324f5753b40a38fad782c8b0bd4e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Female
117 rdf:type schema:DefinedTerm
118 Nb5a476254fd246d798dd5d7421a2ab5a schema:volumeNumber 28
119 rdf:type schema:PublicationVolume
120 Nbbd5256d746b4570b1a84a7e1d606395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Metabolic Syndrome
122 rdf:type schema:DefinedTerm
123 Ncd61374960d340aaa434acf0bb6dc702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Severity of Illness Index
125 rdf:type schema:DefinedTerm
126 Ndb23e744e5d14ae19e1cf2518f3d8bcd schema:name pubmed_id
127 schema:value 15969252
128 rdf:type schema:PropertyValue
129 Ne06aa1b20959411b83bd5b5a2dd0ac85 schema:name doi
130 schema:value 10.1291/hypres.28.27
131 rdf:type schema:PropertyValue
132 Nefc95eccb1804435acbe01590a767264 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Aged, 80 and over
134 rdf:type schema:DefinedTerm
135 Nfd8e4470d2c3463da32dfb3f609f2e17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Male
137 rdf:type schema:DefinedTerm
138 Nfdacbb72706d433ab48c4f6f54db73fe rdf:first sg:person.01031610563.50
139 rdf:rest N346db8e691eb4c35a1caeb3e795231f3
140 Nff944dbc47114a8e8c8facfed8da7ba5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Aged
142 rdf:type schema:DefinedTerm
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
147 schema:name Cardiorespiratory Medicine and Haematology
148 rdf:type schema:DefinedTerm
149 sg:journal.1313717 schema:issn 0916-9636
150 1348-4214
151 schema:name Hypertension Research
152 rdf:type schema:Periodical
153 sg:person.01003460567.51 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
154 schema:familyName Ishizaka
155 schema:givenName Nobukazu
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003460567.51
157 rdf:type schema:Person
158 sg:person.01031610563.50 schema:affiliation https://www.grid.ac/institutes/grid.264706.1
159 schema:familyName Hashimoto
160 schema:givenName Hideki
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031610563.50
162 rdf:type schema:Person
163 sg:person.01236433170.61 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
164 schema:familyName Toda
165 schema:givenName Ei-Ichi
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236433170.61
167 rdf:type schema:Person
168 sg:person.0644344022.81 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
169 schema:familyName Ishizaka
170 schema:givenName Yuko
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644344022.81
172 rdf:type schema:Person
173 sg:person.0760572422.12 schema:affiliation https://www.grid.ac/institutes/grid.415980.1
174 schema:familyName Yamakado
175 schema:givenName Minoru
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760572422.12
177 rdf:type schema:Person
178 sg:person.0772176333.38 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
179 schema:familyName Nagai
180 schema:givenName Ryozo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772176333.38
182 rdf:type schema:Person
183 sg:pub.10.1007/bf00280883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027902786
184 https://doi.org/10.1007/bf00280883
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/sj.ijo.0802381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007277578
187 https://doi.org/10.1038/sj.ijo.0802381
188 rdf:type schema:CreativeWork
189 sg:pub.10.1291/hypres.25.811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044034622
190 https://doi.org/10.1291/hypres.25.811
191 rdf:type schema:CreativeWork
192 sg:pub.10.1291/hypres.26.945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048729544
193 https://doi.org/10.1291/hypres.26.945
194 rdf:type schema:CreativeWork
195 sg:pub.10.2165/00129784-200202010-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009357326
196 https://doi.org/10.2165/00129784-200202010-00003
197 rdf:type schema:CreativeWork
198 sg:pub.10.2165/00129784-200202030-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329220
199 https://doi.org/10.2165/00129784-200202030-00002
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1001/archinte.164.10.1066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049444740
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1001/jama.285.19.2486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033739611
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.atherosclerosis.2003.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039734139
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.diabres.2003.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023363656
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.jacc.2003.09.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013200686
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.jacc.2003.10.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034993926
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0140-6736(03)12151-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014693238
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0735-1097(03)00193-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036472989
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1097/00004872-199917020-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003918995
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1464-5491.2004.01245.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047359178
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1136/bmj.327.7406.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005630519
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1161/01.atv.0000050142.09911.0b schema:sameAs https://app.dimensions.ai/details/publication/pub.1002305209
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1161/01.cir.0000045671.62860.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042332717
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1161/01.cir.0000080897.52664.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010001455
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1161/01.cir.0000108926.04022.0c schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947402
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1161/01.hyp.0000103629.01745.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037535700
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2337/diabetes.52.8.2160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038452480
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2337/diacare.26.4.1251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005366074
236 rdf:type schema:CreativeWork
237 https://doi.org/10.5551/jat.10.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033608253
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.264706.1 schema:alternateName Teikyo University
240 schema:name Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
243 schema:name Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.415980.1 schema:alternateName Mitsui Memorial Hospital
246 schema:name Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, Tokyo, Japan
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...