Negative staining and image classification — powerful tools in modern electron microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-01

AUTHORS

Melanie Ohi, Ying Li, Yifan Cheng, Thomas Walz

ABSTRACT

Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens. More... »

PAGES

23-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1251/bpo70

DOI

http://dx.doi.org/10.1251/bpo70

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028952493

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15103397


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohi", 
        "givenName": "Melanie", 
        "id": "sg:person.01051770055.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051770055.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ying", 
        "id": "sg:person.01132005200.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132005200.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Yifan", 
        "id": "sg:person.01105063132.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105063132.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walz", 
        "givenName": "Thomas", 
        "id": "sg:person.014736023637.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736023637.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/71247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032067512", 
          "https://doi.org/10.1038/71247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386463a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040521478", 
          "https://doi.org/10.1038/386463a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/308032a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046130483", 
          "https://doi.org/10.1038/308032a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001233428", 
          "https://doi.org/10.1038/nature01040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35054102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017994884", 
          "https://doi.org/10.1038/35054102"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens.", 
    "genre": "article", 
    "id": "sg:pub.10.1251/bpo70", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2436394", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1023701", 
        "issn": [
          "1480-9222"
        ], 
        "name": "Biological Procedures Online", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "electron microscopy", 
      "amorphous ice layer", 
      "molecular electron microscopy", 
      "biological macromolecules", 
      "small molecules", 
      "carbon support film", 
      "preparation techniques", 
      "molecule population", 
      "molecules", 
      "modern electron microscopy", 
      "specimen preparation techniques", 
      "support film", 
      "microscopy", 
      "preferred orientation", 
      "macromolecules", 
      "random orientation", 
      "films", 
      "specific advantages", 
      "ice layer", 
      "vitrification", 
      "technique", 
      "negative staining", 
      "orientation", 
      "layer", 
      "high image contrast", 
      "important tool", 
      "image contrast", 
      "state", 
      "advantages", 
      "contrast", 
      "tool", 
      "study", 
      "approach", 
      "staining", 
      "paper", 
      "specimens", 
      "outdated approaches", 
      "population", 
      "classification techniques", 
      "image classification techniques"
    ], 
    "name": "Negative staining and image classification \u2014 powerful tools in modern electron microscopy", 
    "pagination": "23-34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028952493"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1251/bpo70"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15103397"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1251/bpo70", 
      "https://app.dimensions.ai/details/publication/pub.1028952493"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_388.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1251/bpo70"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1251/bpo70'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1251/bpo70'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1251/bpo70'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1251/bpo70'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      71 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1251/bpo70 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N4c99a65da6064ed4a84e5231e5ad9a56
4 schema:citation sg:pub.10.1038/308032a0
5 sg:pub.10.1038/35054102
6 sg:pub.10.1038/386463a0
7 sg:pub.10.1038/71247
8 sg:pub.10.1038/nature01040
9 schema:datePublished 2004-01
10 schema:datePublishedReg 2004-01-01
11 schema:description Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N4dc85177bd964051a9ff1a82ef26ae78
15 N5d73b9c0395d4097910a36f59fcb459e
16 sg:journal.1023701
17 schema:keywords advantages
18 amorphous ice layer
19 approach
20 biological macromolecules
21 carbon support film
22 classification techniques
23 contrast
24 electron microscopy
25 films
26 high image contrast
27 ice layer
28 image classification techniques
29 image contrast
30 important tool
31 layer
32 macromolecules
33 microscopy
34 modern electron microscopy
35 molecular electron microscopy
36 molecule population
37 molecules
38 negative staining
39 orientation
40 outdated approaches
41 paper
42 population
43 preferred orientation
44 preparation techniques
45 random orientation
46 small molecules
47 specific advantages
48 specimen preparation techniques
49 specimens
50 staining
51 state
52 study
53 support film
54 technique
55 tool
56 vitrification
57 schema:name Negative staining and image classification — powerful tools in modern electron microscopy
58 schema:pagination 23-34
59 schema:productId N62bbdb9ea4964381ae921dcc3afddcb4
60 N85976bdbffdf40008cae29566d8bbebb
61 Ne238c66710994876ba1967fd7da28bc7
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028952493
63 https://doi.org/10.1251/bpo70
64 schema:sdDatePublished 2022-09-02T15:51
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7aa3b182bca8484486b2ff69ba791a79
67 schema:url https://doi.org/10.1251/bpo70
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N00d8e8aff6834bc4a3cf8a7b7abaab65 rdf:first sg:person.014736023637.73
72 rdf:rest rdf:nil
73 N4c99a65da6064ed4a84e5231e5ad9a56 rdf:first sg:person.01051770055.22
74 rdf:rest N92edb31c4e214975b31a324c0d19d36d
75 N4dc85177bd964051a9ff1a82ef26ae78 schema:volumeNumber 6
76 rdf:type schema:PublicationVolume
77 N5d73b9c0395d4097910a36f59fcb459e schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N62bbdb9ea4964381ae921dcc3afddcb4 schema:name doi
80 schema:value 10.1251/bpo70
81 rdf:type schema:PropertyValue
82 N68c8e973fa0f49959e9f298dceceb8f4 rdf:first sg:person.01105063132.13
83 rdf:rest N00d8e8aff6834bc4a3cf8a7b7abaab65
84 N7aa3b182bca8484486b2ff69ba791a79 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N85976bdbffdf40008cae29566d8bbebb schema:name pubmed_id
87 schema:value 15103397
88 rdf:type schema:PropertyValue
89 N92edb31c4e214975b31a324c0d19d36d rdf:first sg:person.01132005200.77
90 rdf:rest N68c8e973fa0f49959e9f298dceceb8f4
91 Ne238c66710994876ba1967fd7da28bc7 schema:name dimensions_id
92 schema:value pub.1028952493
93 rdf:type schema:PropertyValue
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Physical Sciences
99 rdf:type schema:DefinedTerm
100 sg:grant.2436394 http://pending.schema.org/fundedItem sg:pub.10.1251/bpo70
101 rdf:type schema:MonetaryGrant
102 sg:journal.1023701 schema:issn 1480-9222
103 schema:name Biological Procedures Online
104 schema:publisher Springer Nature
105 rdf:type schema:Periodical
106 sg:person.01051770055.22 schema:affiliation grid-institutes:grid.38142.3c
107 schema:familyName Ohi
108 schema:givenName Melanie
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051770055.22
110 rdf:type schema:Person
111 sg:person.01105063132.13 schema:affiliation grid-institutes:grid.38142.3c
112 schema:familyName Cheng
113 schema:givenName Yifan
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105063132.13
115 rdf:type schema:Person
116 sg:person.01132005200.77 schema:affiliation grid-institutes:grid.38142.3c
117 schema:familyName Li
118 schema:givenName Ying
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132005200.77
120 rdf:type schema:Person
121 sg:person.014736023637.73 schema:affiliation grid-institutes:grid.38142.3c
122 schema:familyName Walz
123 schema:givenName Thomas
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736023637.73
125 rdf:type schema:Person
126 sg:pub.10.1038/308032a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046130483
127 https://doi.org/10.1038/308032a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/35054102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017994884
130 https://doi.org/10.1038/35054102
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/386463a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040521478
133 https://doi.org/10.1038/386463a0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/71247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032067512
136 https://doi.org/10.1038/71247
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature01040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001233428
139 https://doi.org/10.1038/nature01040
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.38142.3c schema:alternateName Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA
142 Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA
143 schema:name Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA
144 Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, 02115, Boston, MA, USA
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...