Impact of Neoadjuvant Chemotherapy on Clinical Risk Scores and Survival in Patients with Colorectal Liver Metastases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10-11

AUTHORS

Kerstin Wimmer, Christoph Schwarz, Carmen Szabo, Martin Bodingbauer, Dietmar Tamandl, Martina Mittlböck, Klaus Kaczirek

ABSTRACT

BACKGROUND: Several clinical risk scores for patients with colorectal liver metastases (CLM) were established in cohorts of patients undergoing liver resection (LR) without neoadjuvant chemotherapy (NAC). The purpose of the study was to evaluate the predictive values of four common risk scores in the setting of NAC and the impact of score changes during NAC. METHODS: Risk scores (Fong, Nordlinger, Nagashima, and Konopke) were retrospectively calculated for 336 patients undergoing LR for CLM, including 109 patients without and 227 patients with NAC. In patients with NAC, the scores were calculated before and after NAC. RESULTS: In patients without NAC (n = 109), all risk scores except the Konopke score showed a significant correlation with disease-free survival (DFS). Only the Nagashima score also was predictive for overall survival (OS). In patients with NAC (n = 227), all scores except the Konopke score were predictive for DFS and OS before and after NAC. Score changes in the Fong and the Nagashima score showed a significant correlation with DFS and OS. CONCLUSIONS: Nagashima score was the most universally applicable score and predicted prognosis in all tested scenarios. More... »

PAGES

236-243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3

DOI

http://dx.doi.org/10.1245/s10434-016-5615-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009332547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27730370


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotherapy, Adjuvant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wimmer", 
        "givenName": "Kerstin", 
        "id": "sg:person.012553277104.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553277104.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwarz", 
        "givenName": "Christoph", 
        "id": "sg:person.01155322160.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155322160.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szabo", 
        "givenName": "Carmen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bodingbauer", 
        "givenName": "Martin", 
        "id": "sg:person.0730602532.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730602532.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamandl", 
        "givenName": "Dietmar", 
        "id": "sg:person.01307322440.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307322440.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mittlb\u00f6ck", 
        "givenName": "Martina", 
        "id": "sg:person.0716137422.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716137422.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaczirek", 
        "givenName": "Klaus", 
        "id": "sg:person.01163404744.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163404744.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1245/s10434-011-1819-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048445507", 
          "https://doi.org/10.1245/s10434-011-1819-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00595-014-1108-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033158483", 
          "https://doi.org/10.1007/s00595-014-1108-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-011-1195-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032473432", 
          "https://doi.org/10.1007/s00384-011-1195-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-11", 
    "datePublishedReg": "2016-10-11", 
    "description": "BACKGROUND: Several clinical risk scores for patients with colorectal liver metastases (CLM) were established in cohorts of patients undergoing liver resection (LR) without neoadjuvant chemotherapy (NAC). The purpose of the study was to evaluate the predictive values of four common risk scores in the setting of NAC and the impact of score changes during NAC.\nMETHODS: Risk scores (Fong, Nordlinger, Nagashima, and Konopke) were retrospectively calculated for 336 patients undergoing LR for CLM, including 109 patients without and 227 patients with NAC. In patients with NAC, the scores were calculated before and after NAC.\nRESULTS: In patients without NAC (n\u00a0=\u00a0109), all risk scores except the Konopke score showed a significant correlation with disease-free survival (DFS). Only the Nagashima score also was predictive for overall survival (OS). In patients with NAC (n\u00a0=\u00a0227), all scores except the Konopke score were predictive for DFS and OS before and after NAC. Score changes in the Fong and the Nagashima score showed a significant correlation with DFS and OS.\nCONCLUSIONS: Nagashima score was the most universally applicable score and predicted prognosis in all tested scenarios.", 
    "genre": "article", 
    "id": "sg:pub.10.1245/s10434-016-5615-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "colorectal liver metastases", 
      "disease-free survival", 
      "clinical risk score", 
      "neoadjuvant chemotherapy", 
      "overall survival", 
      "risk score", 
      "liver resection", 
      "liver metastases", 
      "score change", 
      "setting of NAC", 
      "cohort of patients", 
      "common risk scores", 
      "significant correlation", 
      "patients", 
      "predictive value", 
      "applicable score", 
      "scores", 
      "chemotherapy", 
      "metastasis", 
      "survival", 
      "resection", 
      "prognosis", 
      "cohort", 
      "correlation", 
      "changes", 
      "setting", 
      "study", 
      "impact", 
      "purpose", 
      "values", 
      "Fong", 
      "scenarios", 
      "Konopke score", 
      "Nagashima score"
    ], 
    "name": "Impact of Neoadjuvant Chemotherapy on Clinical Risk Scores and Survival in Patients with Colorectal Liver Metastases", 
    "pagination": "236-243", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009332547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-016-5615-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27730370"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-016-5615-3", 
      "https://app.dimensions.ai/details/publication/pub.1009332547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_694.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1245/s10434-016-5615-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-016-5615-3 schema:about N058f3593cd314269b703d24a899932d9
2 N1291ce3db4fd4dce9e14a0ea7212e553
3 N24383acd079f4edca9478398f9c8ea57
4 N2f72a8479f1a47a48b8c3bbe40fb657b
5 N40e1f57024e04c198401c16e54946c2d
6 N4fe874df83c840879099753d9eaed2df
7 N5c5e88d1456e4e79aede04fd28e55406
8 N6c95abe86a954b4c92ab73c9d3f9fa71
9 N8b196b8959a74a92b0149b17b5133bb6
10 N8ed40c141373477794a63556b13e26bc
11 Na47bf173a7fc450cbf52408cb75423ce
12 Nbc361910a2014609931f9152713dd99f
13 Nd598c10faff14fdc8af19d45158f6cc9
14 Ne6e83691a7244285bc9c9a899af0d933
15 Nf2b73e80fe094a0b9d020d6bc3687d1c
16 Nf3e72e9283864c08b7f00db9a3346893
17 Nf931afd673c346b69bcd3f95bc00ffce
18 Nfeb9029631474b96bee82ed0eb317371
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N1e67fbbfa56c48a2a1723e89700ec581
22 schema:citation sg:pub.10.1007/s00384-011-1195-7
23 sg:pub.10.1007/s00595-014-1108-9
24 sg:pub.10.1245/s10434-011-1819-8
25 schema:datePublished 2016-10-11
26 schema:datePublishedReg 2016-10-11
27 schema:description BACKGROUND: Several clinical risk scores for patients with colorectal liver metastases (CLM) were established in cohorts of patients undergoing liver resection (LR) without neoadjuvant chemotherapy (NAC). The purpose of the study was to evaluate the predictive values of four common risk scores in the setting of NAC and the impact of score changes during NAC. METHODS: Risk scores (Fong, Nordlinger, Nagashima, and Konopke) were retrospectively calculated for 336 patients undergoing LR for CLM, including 109 patients without and 227 patients with NAC. In patients with NAC, the scores were calculated before and after NAC. RESULTS: In patients without NAC (n = 109), all risk scores except the Konopke score showed a significant correlation with disease-free survival (DFS). Only the Nagashima score also was predictive for overall survival (OS). In patients with NAC (n = 227), all scores except the Konopke score were predictive for DFS and OS before and after NAC. Score changes in the Fong and the Nagashima score showed a significant correlation with DFS and OS. CONCLUSIONS: Nagashima score was the most universally applicable score and predicted prognosis in all tested scenarios.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N67b79110ae1348b48fd5e909ccbb7894
32 Nd01533014d2d4f17a93c75b1a9b57d88
33 sg:journal.1105545
34 schema:keywords Fong
35 Konopke score
36 Nagashima score
37 applicable score
38 changes
39 chemotherapy
40 clinical risk score
41 cohort
42 cohort of patients
43 colorectal liver metastases
44 common risk scores
45 correlation
46 disease-free survival
47 impact
48 liver metastases
49 liver resection
50 metastasis
51 neoadjuvant chemotherapy
52 overall survival
53 patients
54 predictive value
55 prognosis
56 purpose
57 resection
58 risk score
59 scenarios
60 score change
61 scores
62 setting
63 setting of NAC
64 significant correlation
65 study
66 survival
67 values
68 schema:name Impact of Neoadjuvant Chemotherapy on Clinical Risk Scores and Survival in Patients with Colorectal Liver Metastases
69 schema:pagination 236-243
70 schema:productId N2543c048770b4b528621e77aeffcf884
71 N5b8d6c82d76e468cbea2b9c975498715
72 N81d51cd3421844d483f4777f78ebad9c
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009332547
74 https://doi.org/10.1245/s10434-016-5615-3
75 schema:sdDatePublished 2022-01-01T18:39
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N8001ed26b3764e6e87778119d00776bc
78 schema:url https://doi.org/10.1245/s10434-016-5615-3
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N058f3593cd314269b703d24a899932d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Female
84 rdf:type schema:DefinedTerm
85 N1291ce3db4fd4dce9e14a0ea7212e553 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Aged
87 rdf:type schema:DefinedTerm
88 N1e67fbbfa56c48a2a1723e89700ec581 rdf:first sg:person.012553277104.24
89 rdf:rest N4464e0e6d9d64a90924f8f256f01335d
90 N24383acd079f4edca9478398f9c8ea57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Male
92 rdf:type schema:DefinedTerm
93 N2543c048770b4b528621e77aeffcf884 schema:name dimensions_id
94 schema:value pub.1009332547
95 rdf:type schema:PropertyValue
96 N2f72a8479f1a47a48b8c3bbe40fb657b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Retrospective Studies
98 rdf:type schema:DefinedTerm
99 N40e1f57024e04c198401c16e54946c2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Neoplasm Staging
101 rdf:type schema:DefinedTerm
102 N4464e0e6d9d64a90924f8f256f01335d rdf:first sg:person.01155322160.90
103 rdf:rest N9ba14f279d5149639b0386f6b819afcf
104 N4bb5b680794e4ffa8cb43ff319c68348 rdf:first sg:person.0730602532.31
105 rdf:rest Nef0eef44be3745da88f3137f54ce83e6
106 N4fe874df83c840879099753d9eaed2df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Hepatectomy
108 rdf:type schema:DefinedTerm
109 N5b8d6c82d76e468cbea2b9c975498715 schema:name doi
110 schema:value 10.1245/s10434-016-5615-3
111 rdf:type schema:PropertyValue
112 N5c5e88d1456e4e79aede04fd28e55406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Liver Neoplasms
114 rdf:type schema:DefinedTerm
115 N67b79110ae1348b48fd5e909ccbb7894 schema:volumeNumber 24
116 rdf:type schema:PublicationVolume
117 N6c95abe86a954b4c92ab73c9d3f9fa71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N7de4a5954c6e431796a2a804d33fab43 rdf:first sg:person.0716137422.31
121 rdf:rest N9a9a09428c8940268072d09e8e7745c8
122 N8001ed26b3764e6e87778119d00776bc schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N81d51cd3421844d483f4777f78ebad9c schema:name pubmed_id
125 schema:value 27730370
126 rdf:type schema:PropertyValue
127 N8b196b8959a74a92b0149b17b5133bb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Prognosis
129 rdf:type schema:DefinedTerm
130 N8ed40c141373477794a63556b13e26bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Colorectal Neoplasms
132 rdf:type schema:DefinedTerm
133 N9a9a09428c8940268072d09e8e7745c8 rdf:first sg:person.01163404744.70
134 rdf:rest rdf:nil
135 N9ba14f279d5149639b0386f6b819afcf rdf:first Ndbd9978762ea4bc3a82de1309b9498de
136 rdf:rest N4bb5b680794e4ffa8cb43ff319c68348
137 Na47bf173a7fc450cbf52408cb75423ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Risk Factors
139 rdf:type schema:DefinedTerm
140 Nbc361910a2014609931f9152713dd99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neoadjuvant Therapy
142 rdf:type schema:DefinedTerm
143 Nd01533014d2d4f17a93c75b1a9b57d88 schema:issueNumber 1
144 rdf:type schema:PublicationIssue
145 Nd598c10faff14fdc8af19d45158f6cc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Risk Assessment
147 rdf:type schema:DefinedTerm
148 Ndbd9978762ea4bc3a82de1309b9498de schema:affiliation grid-institutes:grid.22937.3d
149 schema:familyName Szabo
150 schema:givenName Carmen
151 rdf:type schema:Person
152 Ne6e83691a7244285bc9c9a899af0d933 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Adult
154 rdf:type schema:DefinedTerm
155 Nef0eef44be3745da88f3137f54ce83e6 rdf:first sg:person.01307322440.35
156 rdf:rest N7de4a5954c6e431796a2a804d33fab43
157 Nf2b73e80fe094a0b9d020d6bc3687d1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Survival Rate
159 rdf:type schema:DefinedTerm
160 Nf3e72e9283864c08b7f00db9a3346893 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Chemotherapy, Adjuvant
162 rdf:type schema:DefinedTerm
163 Nf931afd673c346b69bcd3f95bc00ffce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Lymphatic Metastasis
165 rdf:type schema:DefinedTerm
166 Nfeb9029631474b96bee82ed0eb317371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Middle Aged
168 rdf:type schema:DefinedTerm
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
173 schema:name Oncology and Carcinogenesis
174 rdf:type schema:DefinedTerm
175 sg:journal.1105545 schema:issn 1068-9265
176 1534-4681
177 schema:name Annals of Surgical Oncology
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01155322160.90 schema:affiliation grid-institutes:grid.22937.3d
181 schema:familyName Schwarz
182 schema:givenName Christoph
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155322160.90
184 rdf:type schema:Person
185 sg:person.01163404744.70 schema:affiliation grid-institutes:grid.22937.3d
186 schema:familyName Kaczirek
187 schema:givenName Klaus
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163404744.70
189 rdf:type schema:Person
190 sg:person.012553277104.24 schema:affiliation grid-institutes:grid.22937.3d
191 schema:familyName Wimmer
192 schema:givenName Kerstin
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553277104.24
194 rdf:type schema:Person
195 sg:person.01307322440.35 schema:affiliation grid-institutes:grid.22937.3d
196 schema:familyName Tamandl
197 schema:givenName Dietmar
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307322440.35
199 rdf:type schema:Person
200 sg:person.0716137422.31 schema:affiliation grid-institutes:grid.22937.3d
201 schema:familyName Mittlböck
202 schema:givenName Martina
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716137422.31
204 rdf:type schema:Person
205 sg:person.0730602532.31 schema:affiliation grid-institutes:grid.22937.3d
206 schema:familyName Bodingbauer
207 schema:givenName Martin
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730602532.31
209 rdf:type schema:Person
210 sg:pub.10.1007/s00384-011-1195-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032473432
211 https://doi.org/10.1007/s00384-011-1195-7
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00595-014-1108-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033158483
214 https://doi.org/10.1007/s00595-014-1108-9
215 rdf:type schema:CreativeWork
216 sg:pub.10.1245/s10434-011-1819-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048445507
217 https://doi.org/10.1245/s10434-011-1819-8
218 rdf:type schema:CreativeWork
219 grid-institutes:grid.22937.3d schema:alternateName Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
220 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
221 Department of General Surgery, Medical University of Vienna, Vienna, Austria
222 schema:name Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
223 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
224 Department of General Surgery, Medical University of Vienna, Vienna, Austria
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...