Impact of Neoadjuvant Chemotherapy on Clinical Risk Scores and Survival in Patients with Colorectal Liver Metastases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-10-11

AUTHORS

Kerstin Wimmer, Christoph Schwarz, Carmen Szabo, Martin Bodingbauer, Dietmar Tamandl, Martina Mittlböck, Klaus Kaczirek

ABSTRACT

BACKGROUND: Several clinical risk scores for patients with colorectal liver metastases (CLM) were established in cohorts of patients undergoing liver resection (LR) without neoadjuvant chemotherapy (NAC). The purpose of the study was to evaluate the predictive values of four common risk scores in the setting of NAC and the impact of score changes during NAC. METHODS: Risk scores (Fong, Nordlinger, Nagashima, and Konopke) were retrospectively calculated for 336 patients undergoing LR for CLM, including 109 patients without and 227 patients with NAC. In patients with NAC, the scores were calculated before and after NAC. RESULTS: In patients without NAC (n = 109), all risk scores except the Konopke score showed a significant correlation with disease-free survival (DFS). Only the Nagashima score also was predictive for overall survival (OS). In patients with NAC (n = 227), all scores except the Konopke score were predictive for DFS and OS before and after NAC. Score changes in the Fong and the Nagashima score showed a significant correlation with DFS and OS. CONCLUSIONS: Nagashima score was the most universally applicable score and predicted prognosis in all tested scenarios. More... »

PAGES

236-243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3

DOI

http://dx.doi.org/10.1245/s10434-016-5615-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009332547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27730370


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotherapy, Adjuvant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wimmer", 
        "givenName": "Kerstin", 
        "id": "sg:person.012553277104.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553277104.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwarz", 
        "givenName": "Christoph", 
        "id": "sg:person.01155322160.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155322160.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szabo", 
        "givenName": "Carmen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bodingbauer", 
        "givenName": "Martin", 
        "id": "sg:person.0730602532.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730602532.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamandl", 
        "givenName": "Dietmar", 
        "id": "sg:person.01307322440.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307322440.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mittlb\u00f6ck", 
        "givenName": "Martina", 
        "id": "sg:person.0716137422.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716137422.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Medical University of Vienna, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of General Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaczirek", 
        "givenName": "Klaus", 
        "id": "sg:person.01163404744.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163404744.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1245/s10434-011-1819-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048445507", 
          "https://doi.org/10.1245/s10434-011-1819-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00595-014-1108-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033158483", 
          "https://doi.org/10.1007/s00595-014-1108-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-011-1195-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032473432", 
          "https://doi.org/10.1007/s00384-011-1195-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-11", 
    "datePublishedReg": "2016-10-11", 
    "description": "BACKGROUND: Several clinical risk scores for patients with colorectal liver metastases (CLM) were established in cohorts of patients undergoing liver resection (LR) without neoadjuvant chemotherapy (NAC). The purpose of the study was to evaluate the predictive values of four common risk scores in the setting of NAC and the impact of score changes during NAC.\nMETHODS: Risk scores (Fong, Nordlinger, Nagashima, and Konopke) were retrospectively calculated for 336 patients undergoing LR for CLM, including 109 patients without and 227 patients with NAC. In patients with NAC, the scores were calculated before and after NAC.\nRESULTS: In patients without NAC (n\u00a0=\u00a0109), all risk scores except the Konopke score showed a significant correlation with disease-free survival (DFS). Only the Nagashima score also was predictive for overall survival (OS). In patients with NAC (n\u00a0=\u00a0227), all scores except the Konopke score were predictive for DFS and OS before and after NAC. Score changes in the Fong and the Nagashima score showed a significant correlation with DFS and OS.\nCONCLUSIONS: Nagashima score was the most universally applicable score and predicted prognosis in all tested scenarios.", 
    "genre": "article", 
    "id": "sg:pub.10.1245/s10434-016-5615-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "colorectal liver metastases", 
      "disease-free survival", 
      "clinical risk score", 
      "neoadjuvant chemotherapy", 
      "overall survival", 
      "risk score", 
      "liver resection", 
      "liver metastases", 
      "score change", 
      "setting of NAC", 
      "cohort of patients", 
      "common risk scores", 
      "significant correlation", 
      "patients", 
      "predictive value", 
      "applicable score", 
      "scores", 
      "chemotherapy", 
      "metastasis", 
      "survival", 
      "resection", 
      "prognosis", 
      "cohort", 
      "correlation", 
      "changes", 
      "setting", 
      "study", 
      "impact", 
      "purpose", 
      "values", 
      "Fong", 
      "scenarios", 
      "Konopke score", 
      "Nagashima score"
    ], 
    "name": "Impact of Neoadjuvant Chemotherapy on Clinical Risk Scores and Survival in Patients with Colorectal Liver Metastases", 
    "pagination": "236-243", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009332547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-016-5615-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27730370"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-016-5615-3", 
      "https://app.dimensions.ai/details/publication/pub.1009332547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_687.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1245/s10434-016-5615-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5615-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-016-5615-3 schema:about N0af5faad254b4678ba388d1ca0b731f5
2 N23cd30cf45d048839808d4f155d075d1
3 N2809e7ac014e40a0b5d21bb4ea08ef53
4 N3825a20ac4b04bb3aed311d23799a293
5 N3c0b0f61a22648fb9729d7da0cf36cd1
6 N3d660e6495524b6f9d1f2145c934c196
7 N3fbbecd0b12b47a8a976c3ee24ddc33d
8 N46ab7135a24f4800bc23a9b6f4efd552
9 N4bba8f2f12ef45c4bdefe10d30c5c2c0
10 N532256a4ebe5445cb53210310763c7bf
11 N8e6fefbf7c4b4a41a64deecb0dc763a4
12 N957ec9832a884e16a86f66dc4d0cc3a2
13 N9841a1adc66b41c8b23ad1cbb5db859e
14 Na9a2d778d42d432bb89f273ea72c7d52
15 Nb400105861be4929b4282ef9348ab9dd
16 Nde0d7b18b731408c8d04bb3f006463b5
17 Nf1c7b6c560cf45808574c3f9de156b3b
18 Nfb40dfa0a1a1446fae6509f5fbaf2673
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author Nf30326361c8341e7a462f2759d36d728
22 schema:citation sg:pub.10.1007/s00384-011-1195-7
23 sg:pub.10.1007/s00595-014-1108-9
24 sg:pub.10.1245/s10434-011-1819-8
25 schema:datePublished 2016-10-11
26 schema:datePublishedReg 2016-10-11
27 schema:description BACKGROUND: Several clinical risk scores for patients with colorectal liver metastases (CLM) were established in cohorts of patients undergoing liver resection (LR) without neoadjuvant chemotherapy (NAC). The purpose of the study was to evaluate the predictive values of four common risk scores in the setting of NAC and the impact of score changes during NAC. METHODS: Risk scores (Fong, Nordlinger, Nagashima, and Konopke) were retrospectively calculated for 336 patients undergoing LR for CLM, including 109 patients without and 227 patients with NAC. In patients with NAC, the scores were calculated before and after NAC. RESULTS: In patients without NAC (n = 109), all risk scores except the Konopke score showed a significant correlation with disease-free survival (DFS). Only the Nagashima score also was predictive for overall survival (OS). In patients with NAC (n = 227), all scores except the Konopke score were predictive for DFS and OS before and after NAC. Score changes in the Fong and the Nagashima score showed a significant correlation with DFS and OS. CONCLUSIONS: Nagashima score was the most universally applicable score and predicted prognosis in all tested scenarios.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Ncaa7a9cc4c7543c5afcc5b5abf147bde
32 Nd0e72d33c72b4475b3f8d8bd5b11fc11
33 sg:journal.1105545
34 schema:keywords Fong
35 Konopke score
36 Nagashima score
37 applicable score
38 changes
39 chemotherapy
40 clinical risk score
41 cohort
42 cohort of patients
43 colorectal liver metastases
44 common risk scores
45 correlation
46 disease-free survival
47 impact
48 liver metastases
49 liver resection
50 metastasis
51 neoadjuvant chemotherapy
52 overall survival
53 patients
54 predictive value
55 prognosis
56 purpose
57 resection
58 risk score
59 scenarios
60 score change
61 scores
62 setting
63 setting of NAC
64 significant correlation
65 study
66 survival
67 values
68 schema:name Impact of Neoadjuvant Chemotherapy on Clinical Risk Scores and Survival in Patients with Colorectal Liver Metastases
69 schema:pagination 236-243
70 schema:productId N4f92b42da9bd4e33bcff6e5491b0a734
71 Na01ec14c342846e8b5dcf60af7c6e3c3
72 Nc2af2b5483df47a084cc946ec4c6281b
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009332547
74 https://doi.org/10.1245/s10434-016-5615-3
75 schema:sdDatePublished 2021-11-01T18:26
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nd498f35b7b654d2c823324779cf5b45e
78 schema:url https://doi.org/10.1245/s10434-016-5615-3
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0af5faad254b4678ba388d1ca0b731f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Risk Assessment
84 rdf:type schema:DefinedTerm
85 N1897e52275994f4a8a50f495da3a4355 rdf:first sg:person.01155322160.90
86 rdf:rest Nf04434402c614ee7b2436d6833eb281f
87 N23cd30cf45d048839808d4f155d075d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Neoplasm Staging
89 rdf:type schema:DefinedTerm
90 N2809e7ac014e40a0b5d21bb4ea08ef53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Prognosis
92 rdf:type schema:DefinedTerm
93 N3825a20ac4b04bb3aed311d23799a293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Middle Aged
95 rdf:type schema:DefinedTerm
96 N3c0b0f61a22648fb9729d7da0cf36cd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Hepatectomy
98 rdf:type schema:DefinedTerm
99 N3d660e6495524b6f9d1f2145c934c196 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Risk Factors
101 rdf:type schema:DefinedTerm
102 N3fbbecd0b12b47a8a976c3ee24ddc33d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Colorectal Neoplasms
104 rdf:type schema:DefinedTerm
105 N46ab7135a24f4800bc23a9b6f4efd552 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Adult
107 rdf:type schema:DefinedTerm
108 N4bba8f2f12ef45c4bdefe10d30c5c2c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Liver Neoplasms
110 rdf:type schema:DefinedTerm
111 N4f92b42da9bd4e33bcff6e5491b0a734 schema:name dimensions_id
112 schema:value pub.1009332547
113 rdf:type schema:PropertyValue
114 N532256a4ebe5445cb53210310763c7bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Aged
116 rdf:type schema:DefinedTerm
117 N648d663b9dd04ba0bec27a53cdd87b14 rdf:first sg:person.01307322440.35
118 rdf:rest Nebdfd24498524d2eb08cb1f55d6ae6fa
119 N839dc4aeaa094850bc8dcc93f3857cbd schema:affiliation grid-institutes:grid.22937.3d
120 schema:familyName Szabo
121 schema:givenName Carmen
122 rdf:type schema:Person
123 N8e6fefbf7c4b4a41a64deecb0dc763a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Chemotherapy, Adjuvant
125 rdf:type schema:DefinedTerm
126 N957ec9832a884e16a86f66dc4d0cc3a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Male
128 rdf:type schema:DefinedTerm
129 N9841a1adc66b41c8b23ad1cbb5db859e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Lymphatic Metastasis
131 rdf:type schema:DefinedTerm
132 N9a8579eb10dc40dbab7d09b0ff7c81c6 rdf:first sg:person.0730602532.31
133 rdf:rest N648d663b9dd04ba0bec27a53cdd87b14
134 Na01ec14c342846e8b5dcf60af7c6e3c3 schema:name pubmed_id
135 schema:value 27730370
136 rdf:type schema:PropertyValue
137 Na9a2d778d42d432bb89f273ea72c7d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Neoadjuvant Therapy
139 rdf:type schema:DefinedTerm
140 Nb400105861be4929b4282ef9348ab9dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 Nc2af2b5483df47a084cc946ec4c6281b schema:name doi
144 schema:value 10.1245/s10434-016-5615-3
145 rdf:type schema:PropertyValue
146 Ncaa7a9cc4c7543c5afcc5b5abf147bde schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 Nd0e72d33c72b4475b3f8d8bd5b11fc11 schema:volumeNumber 24
149 rdf:type schema:PublicationVolume
150 Nd498f35b7b654d2c823324779cf5b45e schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Nde0d7b18b731408c8d04bb3f006463b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Survival Rate
154 rdf:type schema:DefinedTerm
155 Ne569a07a5bce442f81ea79305f127e1d rdf:first sg:person.01163404744.70
156 rdf:rest rdf:nil
157 Nebdfd24498524d2eb08cb1f55d6ae6fa rdf:first sg:person.0716137422.31
158 rdf:rest Ne569a07a5bce442f81ea79305f127e1d
159 Nf04434402c614ee7b2436d6833eb281f rdf:first N839dc4aeaa094850bc8dcc93f3857cbd
160 rdf:rest N9a8579eb10dc40dbab7d09b0ff7c81c6
161 Nf1c7b6c560cf45808574c3f9de156b3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Female
163 rdf:type schema:DefinedTerm
164 Nf30326361c8341e7a462f2759d36d728 rdf:first sg:person.012553277104.24
165 rdf:rest N1897e52275994f4a8a50f495da3a4355
166 Nfb40dfa0a1a1446fae6509f5fbaf2673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Retrospective Studies
168 rdf:type schema:DefinedTerm
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
173 schema:name Oncology and Carcinogenesis
174 rdf:type schema:DefinedTerm
175 sg:journal.1105545 schema:issn 1068-9265
176 1534-4681
177 schema:name Annals of Surgical Oncology
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01155322160.90 schema:affiliation grid-institutes:grid.22937.3d
181 schema:familyName Schwarz
182 schema:givenName Christoph
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155322160.90
184 rdf:type schema:Person
185 sg:person.01163404744.70 schema:affiliation grid-institutes:grid.22937.3d
186 schema:familyName Kaczirek
187 schema:givenName Klaus
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163404744.70
189 rdf:type schema:Person
190 sg:person.012553277104.24 schema:affiliation grid-institutes:grid.22937.3d
191 schema:familyName Wimmer
192 schema:givenName Kerstin
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553277104.24
194 rdf:type schema:Person
195 sg:person.01307322440.35 schema:affiliation grid-institutes:grid.22937.3d
196 schema:familyName Tamandl
197 schema:givenName Dietmar
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307322440.35
199 rdf:type schema:Person
200 sg:person.0716137422.31 schema:affiliation grid-institutes:grid.22937.3d
201 schema:familyName Mittlböck
202 schema:givenName Martina
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716137422.31
204 rdf:type schema:Person
205 sg:person.0730602532.31 schema:affiliation grid-institutes:grid.22937.3d
206 schema:familyName Bodingbauer
207 schema:givenName Martin
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730602532.31
209 rdf:type schema:Person
210 sg:pub.10.1007/s00384-011-1195-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032473432
211 https://doi.org/10.1007/s00384-011-1195-7
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00595-014-1108-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033158483
214 https://doi.org/10.1007/s00595-014-1108-9
215 rdf:type schema:CreativeWork
216 sg:pub.10.1245/s10434-011-1819-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048445507
217 https://doi.org/10.1245/s10434-011-1819-8
218 rdf:type schema:CreativeWork
219 grid-institutes:grid.22937.3d schema:alternateName Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
220 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
221 Department of General Surgery, Medical University of Vienna, Vienna, Austria
222 schema:name Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
223 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
224 Department of General Surgery, Medical University of Vienna, Vienna, Austria
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...