Use of a Magnetic Tracer for Sentinel Lymph Node Detection in Early-Stage Breast Cancer Patients: A Meta-analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Mediget Teshome, Caimiao Wei, Kelly K. Hunt, Alastair Thompson, Kelly Rodriguez, Elizabeth A. Mittendorf

ABSTRACT

BACKGROUND: Sentinel lymph node (SLN) dissection involves lymphatic mapping and selective removal of clinically negative lymph nodes at highest risk for harboring metastases. Lymphatic mapping is most often performed using radioisotope with or without blue dye (standard tracers). Sienna+(®), a superparamagnetic iron oxide that can be detected using the Sentimag(®) magnetometer, is an alternative mapping agent to identify SLNs that has been investigated in five clinical trials. This meta-analysis was performed to determine if Sienna+(®) is non-inferior for SLN detection when compared to standard tracers. METHODS: Five clinical trials comparing Sienna+(®) to a standard technique were identified, and data from these studies were used to determine the agreement by Kappa statistic between Sienna+(®) and standard tracers in identifying SLNs and malignant SLNs. The trials included 1683 SLNs identified in 804 patients. Data from the studies were imbalanced, therefore additional agreement indices were utilized to compare techniques. The estimated difference between the techniques was analyzed and a margin of ≤5 % was used to determine non-inferiority. RESULTS: Agreement between the Sienna+(®) and standard tracers was strong for SLN detection by patient [prevalence-adjusted bias-adjusted kappa (PABAK) 0.94, 95 % confidence interval (CI) 0.89-0.98], moderate to substantial for SLN detection by node (PABAK 0.68, 95 % CI 0.54-0.82), and strong for the detection of malignant SLNs by patient (PABAK 0.89, 95 % CI 0.84-0.95). Sienna+(®) demonstrated non-inferiority compared with standard tracers. CONCLUSIONS: The Sienna+(®) mapping agent is non-inferior to the standard method for SLN detection in patients with clinically node-negative breast cancer. More... »

PAGES

1508-1514

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-016-5135-1

DOI

http://dx.doi.org/10.1245/s10434-016-5135-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030427679

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26893221


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dextrans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ferrosoferric Oxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetite Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Distribution", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teshome", 
        "givenName": "Mediget", 
        "id": "sg:person.0764655056.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764655056.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Caimiao", 
        "id": "sg:person.016125230707.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016125230707.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunt", 
        "givenName": "Kelly K.", 
        "id": "sg:person.01340214713.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340214713.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "Alastair", 
        "id": "sg:person.014763627152.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763627152.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodriguez", 
        "givenName": "Kelly", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mittendorf", 
        "givenName": "Elizabeth A.", 
        "id": "sg:person.01277610130.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277610130.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejso.2015.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000062343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181c0e92a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003032083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181c0e92a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003032083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181c0e92a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003032083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/aso.2006.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003144740", 
          "https://doi.org/10.1245/aso.2006.05.013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/aso.2006.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003144740", 
          "https://doi.org/10.1245/aso.2006.05.013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjsurg.2004.06.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003336603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(10)70207-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003344895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003741954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003741954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.07.4062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009850330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)01004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011930097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.21226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.21226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ecc.12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013403457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.21535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.21535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013627651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9610(01)00734-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018316958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.23514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025274595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199409000-00015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025844838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199409000-00015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025844838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10434-001-0013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026261456", 
          "https://doi.org/10.1007/s10434-001-0013-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(07)70278-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031256262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-7404(93)90064-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036041824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejso.2015.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038267099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-013-3379-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041159116", 
          "https://doi.org/10.1245/s10434-013-3379-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.breast.2014.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041796381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1445-2197.2003.02783.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042599254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.5211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046214242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.5211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046214242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-008-0229-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046341250", 
          "https://doi.org/10.1245/s10434-008-0229-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejso.2014.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejso.2007.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051157839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6060(99)70127-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051938643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa012782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052774494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v036.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070163933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077187705", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "BACKGROUND: Sentinel lymph node (SLN) dissection involves lymphatic mapping and selective removal of clinically negative lymph nodes at highest risk for harboring metastases. Lymphatic mapping is most often performed using radioisotope with or without blue dye (standard tracers). Sienna+(\u00ae), a superparamagnetic iron oxide that can be detected using the Sentimag(\u00ae) magnetometer, is an alternative mapping agent to identify SLNs that has been investigated in five clinical trials. This meta-analysis was performed to determine if Sienna+(\u00ae) is non-inferior for SLN detection when compared to standard tracers.\nMETHODS: Five clinical trials comparing Sienna+(\u00ae) to a standard technique were identified, and data from these studies were used to determine the agreement by Kappa statistic between Sienna+(\u00ae) and standard tracers in identifying SLNs and malignant SLNs. The trials included 1683 SLNs identified in 804 patients. Data from the studies were imbalanced, therefore additional agreement indices were utilized to compare techniques. The estimated difference between the techniques was analyzed and a margin of \u22645\u00a0% was used to determine non-inferiority.\nRESULTS: Agreement between the Sienna+(\u00ae) and standard tracers was strong for SLN detection by patient [prevalence-adjusted bias-adjusted kappa (PABAK) 0.94, 95\u00a0% confidence interval (CI) 0.89-0.98], moderate to substantial for SLN detection by node (PABAK 0.68, 95\u00a0% CI 0.54-0.82), and strong for the detection of malignant SLNs by patient (PABAK 0.89, 95\u00a0% CI 0.84-0.95). Sienna+(\u00ae) demonstrated non-inferiority compared with standard tracers.\nCONCLUSIONS: The Sienna+(\u00ae) mapping agent is non-inferior to the standard method for SLN detection in patients with clinically node-negative breast cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1245/s10434-016-5135-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438826", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Use of a Magnetic Tracer for Sentinel Lymph Node Detection in Early-Stage Breast Cancer Patients: A Meta-analysis", 
    "pagination": "1508-1514", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90f4746eb1df40c889bc9e657ef576932b83cc0e3964b1ae8ac3456b98642f01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26893221"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9420840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-016-5135-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030427679"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-016-5135-1", 
      "https://app.dimensions.ai/details/publication/pub.1030427679"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1245/s10434-016-5135-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5135-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5135-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5135-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-016-5135-1'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      70 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-016-5135-1 schema:about N0c334ad8173840cd8123dddbc2a2f653
2 N1415e0614ef942a6900222cc8a5a2451
3 N23281f161306417789e066f9606733aa
4 N54a876daab5745edbdd74f14e5ee97cc
5 Nb33ee343bfd74ef3ac748390bd31a11c
6 Nbe967241b9fa4a63b93d207124c18865
7 Nda732b24039a4795840ddb662d789824
8 Nf0b8984e0c5241db910a360e5ebf061e
9 Nf10beced2860411c9cd26f02369def72
10 Nf3df87542c75475b8359fc93698df907
11 Nfabdb806f2b84257b20272c3498c02cd
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N8deb0de3e3e84f80a1ae107117475d0e
15 schema:citation sg:pub.10.1007/s10434-001-0013-9
16 sg:pub.10.1245/aso.2006.05.013
17 sg:pub.10.1245/s10434-008-0229-z
18 sg:pub.10.1245/s10434-013-3379-6
19 https://app.dimensions.ai/details/publication/pub.1077187705
20 https://doi.org/10.1002/bjs.5211
21 https://doi.org/10.1002/cncr.21226
22 https://doi.org/10.1002/cncr.23514
23 https://doi.org/10.1002/jso.21535
24 https://doi.org/10.1016/0960-7404(93)90064-6
25 https://doi.org/10.1016/j.amjsurg.2004.06.042
26 https://doi.org/10.1016/j.breast.2014.01.004
27 https://doi.org/10.1016/j.ejso.2007.05.017
28 https://doi.org/10.1016/j.ejso.2014.11.006
29 https://doi.org/10.1016/j.ejso.2015.03.005
30 https://doi.org/10.1016/j.ejso.2015.04.017
31 https://doi.org/10.1016/s0002-9610(01)00734-6
32 https://doi.org/10.1016/s0039-6060(99)70127-3
33 https://doi.org/10.1016/s0140-6736(97)01004-0
34 https://doi.org/10.1016/s1470-2045(07)70278-4
35 https://doi.org/10.1016/s1470-2045(10)70207-2
36 https://doi.org/10.1046/j.1445-2197.2003.02783.x
37 https://doi.org/10.1056/nejmoa012782
38 https://doi.org/10.1093/jnci/djj158
39 https://doi.org/10.1097/00000658-199409000-00015
40 https://doi.org/10.1097/sla.0b013e3181c0e92a
41 https://doi.org/10.1111/ecc.12385
42 https://doi.org/10.1200/jco.2006.07.4062
43 https://doi.org/10.18637/jss.v036.i03
44 https://doi.org/10.2307/3001666
45 schema:datePublished 2016-05
46 schema:datePublishedReg 2016-05-01
47 schema:description BACKGROUND: Sentinel lymph node (SLN) dissection involves lymphatic mapping and selective removal of clinically negative lymph nodes at highest risk for harboring metastases. Lymphatic mapping is most often performed using radioisotope with or without blue dye (standard tracers). Sienna+(®), a superparamagnetic iron oxide that can be detected using the Sentimag(®) magnetometer, is an alternative mapping agent to identify SLNs that has been investigated in five clinical trials. This meta-analysis was performed to determine if Sienna+(®) is non-inferior for SLN detection when compared to standard tracers. METHODS: Five clinical trials comparing Sienna+(®) to a standard technique were identified, and data from these studies were used to determine the agreement by Kappa statistic between Sienna+(®) and standard tracers in identifying SLNs and malignant SLNs. The trials included 1683 SLNs identified in 804 patients. Data from the studies were imbalanced, therefore additional agreement indices were utilized to compare techniques. The estimated difference between the techniques was analyzed and a margin of ≤5 % was used to determine non-inferiority. RESULTS: Agreement between the Sienna+(®) and standard tracers was strong for SLN detection by patient [prevalence-adjusted bias-adjusted kappa (PABAK) 0.94, 95 % confidence interval (CI) 0.89-0.98], moderate to substantial for SLN detection by node (PABAK 0.68, 95 % CI 0.54-0.82), and strong for the detection of malignant SLNs by patient (PABAK 0.89, 95 % CI 0.84-0.95). Sienna+(®) demonstrated non-inferiority compared with standard tracers. CONCLUSIONS: The Sienna+(®) mapping agent is non-inferior to the standard method for SLN detection in patients with clinically node-negative breast cancer.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N611db66c89f34894bf59bb814c0d2f78
52 N81e92d7407d3486b8935c166665091bb
53 sg:journal.1105545
54 schema:name Use of a Magnetic Tracer for Sentinel Lymph Node Detection in Early-Stage Breast Cancer Patients: A Meta-analysis
55 schema:pagination 1508-1514
56 schema:productId N01f6f8ab7d5943849688ae7ab0e09ed9
57 N080fc1fad7d941388dabde67aef986be
58 N53c47e145ad3444890f132c073623ff5
59 Nd6ae2c25ddea4048b0c573a3228fc136
60 Ne6511452f64f412f81c14165cda66538
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030427679
62 https://doi.org/10.1245/s10434-016-5135-1
63 schema:sdDatePublished 2019-04-10T13:12
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N5c474136d60d4c9a8923becf99e1aef3
66 schema:url http://link.springer.com/10.1245/s10434-016-5135-1
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N01f6f8ab7d5943849688ae7ab0e09ed9 schema:name nlm_unique_id
71 schema:value 9420840
72 rdf:type schema:PropertyValue
73 N080fc1fad7d941388dabde67aef986be schema:name readcube_id
74 schema:value 90f4746eb1df40c889bc9e657ef576932b83cc0e3964b1ae8ac3456b98642f01
75 rdf:type schema:PropertyValue
76 N0c334ad8173840cd8123dddbc2a2f653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Tissue Distribution
78 rdf:type schema:DefinedTerm
79 N1415e0614ef942a6900222cc8a5a2451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Ferrosoferric Oxide
81 rdf:type schema:DefinedTerm
82 N23281f161306417789e066f9606733aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 N25790857c125401891429151b9a16097 rdf:first sg:person.016125230707.17
86 rdf:rest N721deeb7ebf644a58fb45f43deaecf2c
87 N2a2e16b5199d4765ad2b3e73795871a8 rdf:first N82eb50d116bb4acb88e1f7188561531a
88 rdf:rest N7c19d69ab18543c4bb8b8e30d3af0d63
89 N53c47e145ad3444890f132c073623ff5 schema:name pubmed_id
90 schema:value 26893221
91 rdf:type schema:PropertyValue
92 N54a876daab5745edbdd74f14e5ee97cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Contrast Media
94 rdf:type schema:DefinedTerm
95 N5c474136d60d4c9a8923becf99e1aef3 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N611db66c89f34894bf59bb814c0d2f78 schema:issueNumber 5
98 rdf:type schema:PublicationIssue
99 N721deeb7ebf644a58fb45f43deaecf2c rdf:first sg:person.01340214713.66
100 rdf:rest Nb4e38b4f0f624124aaf5710aa9ce90de
101 N7c19d69ab18543c4bb8b8e30d3af0d63 rdf:first sg:person.01277610130.61
102 rdf:rest rdf:nil
103 N81e92d7407d3486b8935c166665091bb schema:volumeNumber 23
104 rdf:type schema:PublicationVolume
105 N82eb50d116bb4acb88e1f7188561531a schema:affiliation https://www.grid.ac/institutes/grid.240145.6
106 schema:familyName Rodriguez
107 schema:givenName Kelly
108 rdf:type schema:Person
109 N8deb0de3e3e84f80a1ae107117475d0e rdf:first sg:person.0764655056.21
110 rdf:rest N25790857c125401891429151b9a16097
111 Nb33ee343bfd74ef3ac748390bd31a11c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Dextrans
113 rdf:type schema:DefinedTerm
114 Nb4e38b4f0f624124aaf5710aa9ce90de rdf:first sg:person.014763627152.10
115 rdf:rest N2a2e16b5199d4765ad2b3e73795871a8
116 Nbe967241b9fa4a63b93d207124c18865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Magnetite Nanoparticles
118 rdf:type schema:DefinedTerm
119 Nd6ae2c25ddea4048b0c573a3228fc136 schema:name doi
120 schema:value 10.1245/s10434-016-5135-1
121 rdf:type schema:PropertyValue
122 Nda732b24039a4795840ddb662d789824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Breast Neoplasms
124 rdf:type schema:DefinedTerm
125 Ne6511452f64f412f81c14165cda66538 schema:name dimensions_id
126 schema:value pub.1030427679
127 rdf:type schema:PropertyValue
128 Nf0b8984e0c5241db910a360e5ebf061e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Sentinel Lymph Node
130 rdf:type schema:DefinedTerm
131 Nf10beced2860411c9cd26f02369def72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sentinel Lymph Node Biopsy
133 rdf:type schema:DefinedTerm
134 Nf3df87542c75475b8359fc93698df907 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Female
136 rdf:type schema:DefinedTerm
137 Nfabdb806f2b84257b20272c3498c02cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Prognosis
139 rdf:type schema:DefinedTerm
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
144 schema:name Clinical Sciences
145 rdf:type schema:DefinedTerm
146 sg:grant.2438826 http://pending.schema.org/fundedItem sg:pub.10.1245/s10434-016-5135-1
147 rdf:type schema:MonetaryGrant
148 sg:journal.1105545 schema:issn 1068-9265
149 1534-4681
150 schema:name Annals of Surgical Oncology
151 rdf:type schema:Periodical
152 sg:person.01277610130.61 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
153 schema:familyName Mittendorf
154 schema:givenName Elizabeth A.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277610130.61
156 rdf:type schema:Person
157 sg:person.01340214713.66 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
158 schema:familyName Hunt
159 schema:givenName Kelly K.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340214713.66
161 rdf:type schema:Person
162 sg:person.014763627152.10 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
163 schema:familyName Thompson
164 schema:givenName Alastair
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763627152.10
166 rdf:type schema:Person
167 sg:person.016125230707.17 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
168 schema:familyName Wei
169 schema:givenName Caimiao
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016125230707.17
171 rdf:type schema:Person
172 sg:person.0764655056.21 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
173 schema:familyName Teshome
174 schema:givenName Mediget
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764655056.21
176 rdf:type schema:Person
177 sg:pub.10.1007/s10434-001-0013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026261456
178 https://doi.org/10.1007/s10434-001-0013-9
179 rdf:type schema:CreativeWork
180 sg:pub.10.1245/aso.2006.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003144740
181 https://doi.org/10.1245/aso.2006.05.013
182 rdf:type schema:CreativeWork
183 sg:pub.10.1245/s10434-008-0229-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046341250
184 https://doi.org/10.1245/s10434-008-0229-z
185 rdf:type schema:CreativeWork
186 sg:pub.10.1245/s10434-013-3379-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041159116
187 https://doi.org/10.1245/s10434-013-3379-6
188 rdf:type schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1077187705 schema:CreativeWork
190 https://doi.org/10.1002/bjs.5211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046214242
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/cncr.21226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023307
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/cncr.23514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025274595
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/jso.21535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013627651
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/0960-7404(93)90064-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036041824
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.amjsurg.2004.06.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003336603
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.breast.2014.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041796381
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.ejso.2007.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051157839
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.ejso.2014.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046871516
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.ejso.2015.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038267099
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.ejso.2015.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000062343
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0002-9610(01)00734-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018316958
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0039-6060(99)70127-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051938643
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0140-6736(97)01004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011930097
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s1470-2045(07)70278-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031256262
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s1470-2045(10)70207-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003344895
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1046/j.1445-2197.2003.02783.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042599254
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1056/nejmoa012782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052774494
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/jnci/djj158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003741954
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1097/00000658-199409000-00015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025844838
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1097/sla.0b013e3181c0e92a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003032083
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1111/ecc.12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013403457
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1200/jco.2006.07.4062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009850330
235 rdf:type schema:CreativeWork
236 https://doi.org/10.18637/jss.v036.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672546
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2307/3001666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070163933
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
241 schema:name Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
242 Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...