Clinical Implementations of Preoperative Computed Tomography Lymphography in Gastric Cancer: A Comparison with Dual Tracer Methods in Sentinel Node Navigation ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

Ju-Hee Lee, Do Joong Park, Young Hoon Kim, Cheol-Min Shin, Hye Seung Lee, Hyung-Ho Kim

ABSTRACT

BACKGROUND: Current sentinel node (SN) detection techniques require a learning period and tracers have many disadvantages for practical use. The purpose of this study was to evaluate the feasibility of preoperative computed tomography (CT) lymphography using lipiodol for detecting SNs in gastric cancer. METHODS: A total of 24 patients who underwent laparoscopic surgery for early gastric cancer were enrolled in this study. Noncontrast CT images were obtained 1-2 h after endoscopic submucosal peritumoral injection of 1 mL of lipiodol the day before surgery. The final sentinel basins (SBs) were decided by the dual tracer method (indocyanine green plus (99m)Tc-antimony sulfur colloid) during laparoscopic gastrectomy. SN detection rate by preoperative CT lymphography using lipiodol and agreement between CT lymphography versus dual tracer method were evaluated. The agreement was confirmed with soft X-ray radiography of detected SBs. RESULTS: Technical failure of endoscopic lipiodol injection occurred in one patient. SNs were successfully detected in the remaining 23 patients (95.8 %), whereas the intraoperative SB detection rate using the dual method was 100 %. The agreement rate, defined as the concordance between two methods or inclusion of SNs detected by CT lymphography in SBs by the dual tracer method, was 87 %. CONCLUSIONS: Our initial experience of CT lymphography using lipiodol shows good potential in predicting SBs of gastric cancer preoperatively. However, SN detection by CT lymphography and the dual method should be applied complementarily in gastric cancer because discrepancies between these methods occur. More... »

PAGES

2296-2303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8

DOI

http://dx.doi.org/10.1245/s10434-012-2855-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041981239

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23338481


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antimony", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coloring Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethiodized Oil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indocyanine Green", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laparoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preoperative Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ju-Hee", 
        "id": "sg:person.0766304604.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766304604.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
            "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Do Joong", 
        "id": "sg:person.014104715634.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104715634.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Hoon", 
        "id": "sg:person.015510376344.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510376344.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Cheol-Min", 
        "id": "sg:person.01354014762.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354014762.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Bundang Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hye Seung", 
        "id": "sg:person.014357233714.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357233714.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
            "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyung-Ho", 
        "id": "sg:person.015751011744.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751011744.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1072-7515(02)01594-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002755065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1072-7515(02)01594-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002755065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-006-0142-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004557872", 
          "https://doi.org/10.1007/s00268-006-0142-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-006-0142-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004557872", 
          "https://doi.org/10.1007/s00268-006-0142-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)01004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011930097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucmedbio.2010.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012532880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.20863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012932984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12282-009-0183-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013492421", 
          "https://doi.org/10.1007/s12282-009-0183-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-007-9026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014775741", 
          "https://doi.org/10.1007/s00270-007-9026-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2003.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017709643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-2106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020425501", 
          "https://doi.org/10.1245/s10434-011-2106-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.1800820321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024901343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4174/jkss.2012.82.2.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027743724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030703112", 
          "https://doi.org/10.1007/pl00011681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181c8cf19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031566497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181c8cf19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031566497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181c8cf19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031566497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1072-7515(99)00130-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035587348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-012-2170-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042081474", 
          "https://doi.org/10.1007/s00464-012-2170-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044544622", 
          "https://doi.org/10.1245/s10434-010-1221-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02482311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044764340", 
          "https://doi.org/10.1007/bf02482311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02482311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044764340", 
          "https://doi.org/10.1007/bf02482311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-9260(05)80199-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049552334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2004.04.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052340278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2010.01706.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052811377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2010.01706.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052811377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3349/ymj.2010.51.3.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053328619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3349/ymj.2010.51.3.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053328619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1997.15.6.2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083106808"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "BACKGROUND: Current sentinel node (SN) detection techniques require a learning period and tracers have many disadvantages for practical use. The purpose of this study was to evaluate the feasibility of preoperative computed tomography (CT) lymphography using lipiodol for detecting SNs in gastric cancer.\nMETHODS: A total of 24 patients who underwent laparoscopic surgery for early gastric cancer were enrolled in this study. Noncontrast CT images were obtained 1-2 h after endoscopic submucosal peritumoral injection of 1 mL of lipiodol the day before surgery. The final sentinel basins (SBs) were decided by the dual tracer method (indocyanine green plus (99m)Tc-antimony sulfur colloid) during laparoscopic gastrectomy. SN detection rate by preoperative CT lymphography using lipiodol and agreement between CT lymphography versus dual tracer method were evaluated. The agreement was confirmed with soft X-ray radiography of detected SBs.\nRESULTS: Technical failure of endoscopic lipiodol injection occurred in one patient. SNs were successfully detected in the remaining 23 patients (95.8 %), whereas the intraoperative SB detection rate using the dual method was 100 %. The agreement rate, defined as the concordance between two methods or inclusion of SNs detected by CT lymphography in SBs by the dual tracer method, was 87 %.\nCONCLUSIONS: Our initial experience of CT lymphography using lipiodol shows good potential in predicting SBs of gastric cancer preoperatively. However, SN detection by CT lymphography and the dual method should be applied complementarily in gastric cancer because discrepancies between these methods occur.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1245/s10434-012-2855-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Clinical Implementations of Preoperative Computed Tomography Lymphography in Gastric Cancer: A Comparison with Dual Tracer Methods in Sentinel Node Navigation Surgery", 
    "pagination": "2296-2303", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7fab7c15cff53a0d8c27476b0aaf9d5c3cc5c442cdf3dfaf6922e0ce517c1c5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23338481"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9420840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-012-2855-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041981239"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-012-2855-8", 
      "https://app.dimensions.ai/details/publication/pub.1041981239"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1245/s10434-012-2855-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      72 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-012-2855-8 schema:about N1a04f5cfade04fbe83bf9d12009c4dc6
2 N2286ae812997459ea898435eed43dbc7
3 N332a9fd6ae5d4aa4b5429c3fe83a94f3
4 N368049a1c9f845d985324cf9598d3060
5 N37697cce5bc8456c86d97a409647801d
6 N38080de38b054ca2baecb21222df262e
7 N5cda519e0fdc47e1a7a7e3bfab1e6580
8 N60d9991ac2834fd9975940601abd9dbd
9 N8a8cf4f4d7654951b13cdd9793bfed16
10 N925ebfc65c3f45eeb98308939d0a1ee8
11 Naa1e3ba628474bb58ec1a50b806f1d2c
12 Naf9b0d19dfa649549159b74cfcbdeb9f
13 Nb27df7c95f6c4b37b7018bae5bbee4f3
14 Nbf916ab3be604871a8a6e1c06cc1ccb7
15 Nc30a58b5bf634532920d4b3f0aa65175
16 Nd2cd865df5924998bb189a7f2dc6017c
17 Nd5c5e1cc2730488981584b63b43e1f56
18 Ndfb5f295c2b240c296c947ea90c6efac
19 Nea322959195b45e78600a29663fddcdd
20 Nf5eefca603284d2cb2622a3b40df689a
21 Nf9ac2f6cf1cd4adcb1f4a5067b90e73f
22 anzsrc-for:11
23 anzsrc-for:1103
24 schema:author Nc61bd6860e7645949abad265b2147903
25 schema:citation sg:pub.10.1007/bf02482311
26 sg:pub.10.1007/pl00011681
27 sg:pub.10.1007/s00268-006-0142-1
28 sg:pub.10.1007/s00270-007-9026-5
29 sg:pub.10.1007/s00464-012-2170-2
30 sg:pub.10.1007/s12282-009-0183-z
31 sg:pub.10.1245/s10434-010-1221-y
32 sg:pub.10.1245/s10434-011-2106-4
33 https://doi.org/10.1002/bjs.1800820321
34 https://doi.org/10.1002/jso.20863
35 https://doi.org/10.1016/j.ejca.2004.04.033
36 https://doi.org/10.1016/j.nucmedbio.2010.09.010
37 https://doi.org/10.1016/j.surg.2003.07.003
38 https://doi.org/10.1016/s0009-9260(05)80199-0
39 https://doi.org/10.1016/s0140-6736(97)01004-0
40 https://doi.org/10.1016/s1072-7515(02)01594-6
41 https://doi.org/10.1016/s1072-7515(99)00130-1
42 https://doi.org/10.1097/rli.0b013e3181c8cf19
43 https://doi.org/10.1111/j.1349-7006.2010.01706.x
44 https://doi.org/10.1200/jco.1997.15.6.2345
45 https://doi.org/10.3349/ymj.2010.51.3.407
46 https://doi.org/10.4174/jkss.2012.82.2.70
47 schema:datePublished 2013-07
48 schema:datePublishedReg 2013-07-01
49 schema:description BACKGROUND: Current sentinel node (SN) detection techniques require a learning period and tracers have many disadvantages for practical use. The purpose of this study was to evaluate the feasibility of preoperative computed tomography (CT) lymphography using lipiodol for detecting SNs in gastric cancer. METHODS: A total of 24 patients who underwent laparoscopic surgery for early gastric cancer were enrolled in this study. Noncontrast CT images were obtained 1-2 h after endoscopic submucosal peritumoral injection of 1 mL of lipiodol the day before surgery. The final sentinel basins (SBs) were decided by the dual tracer method (indocyanine green plus (99m)Tc-antimony sulfur colloid) during laparoscopic gastrectomy. SN detection rate by preoperative CT lymphography using lipiodol and agreement between CT lymphography versus dual tracer method were evaluated. The agreement was confirmed with soft X-ray radiography of detected SBs. RESULTS: Technical failure of endoscopic lipiodol injection occurred in one patient. SNs were successfully detected in the remaining 23 patients (95.8 %), whereas the intraoperative SB detection rate using the dual method was 100 %. The agreement rate, defined as the concordance between two methods or inclusion of SNs detected by CT lymphography in SBs by the dual tracer method, was 87 %. CONCLUSIONS: Our initial experience of CT lymphography using lipiodol shows good potential in predicting SBs of gastric cancer preoperatively. However, SN detection by CT lymphography and the dual method should be applied complementarily in gastric cancer because discrepancies between these methods occur.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N0c44d28710284ffa94f39274de35b718
54 N702d26fe4f4547bba41ef8a918c1d942
55 sg:journal.1105545
56 schema:name Clinical Implementations of Preoperative Computed Tomography Lymphography in Gastric Cancer: A Comparison with Dual Tracer Methods in Sentinel Node Navigation Surgery
57 schema:pagination 2296-2303
58 schema:productId N5eb5f2e4db224e8983f1741fb0430541
59 N7115c62fa7384d4987bcfb5b83e2c17a
60 N7aea267705e24f01b1e9020967ab08e9
61 Nb6a104e1520c433191a2b4b5726d6884
62 Nd75a07ed42594c95b66e45412821f597
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041981239
64 https://doi.org/10.1245/s10434-012-2855-8
65 schema:sdDatePublished 2019-04-10T19:06
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N4cb5b0e0228545199166674b311f25dd
68 schema:url http://link.springer.com/10.1245/s10434-012-2855-8
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N02090122ad454029a6f7626eb4caf910 rdf:first sg:person.014104715634.26
73 rdf:rest N49ce0182e3a54257a65370c76c8b0472
74 N0c44d28710284ffa94f39274de35b718 schema:issueNumber 7
75 rdf:type schema:PublicationIssue
76 N1a04f5cfade04fbe83bf9d12009c4dc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Laparoscopy
78 rdf:type schema:DefinedTerm
79 N2286ae812997459ea898435eed43dbc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Antimony
81 rdf:type schema:DefinedTerm
82 N332a9fd6ae5d4aa4b5429c3fe83a94f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Female
84 rdf:type schema:DefinedTerm
85 N368049a1c9f845d985324cf9598d3060 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Tomography, X-Ray Computed
87 rdf:type schema:DefinedTerm
88 N37697cce5bc8456c86d97a409647801d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Indocyanine Green
90 rdf:type schema:DefinedTerm
91 N38080de38b054ca2baecb21222df262e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Radionuclide Imaging
93 rdf:type schema:DefinedTerm
94 N49ce0182e3a54257a65370c76c8b0472 rdf:first sg:person.015510376344.15
95 rdf:rest N96ecb759ecc14dd19ba547889d90c13d
96 N4cb5b0e0228545199166674b311f25dd schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N5cda519e0fdc47e1a7a7e3bfab1e6580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Sentinel Lymph Node Biopsy
100 rdf:type schema:DefinedTerm
101 N5eb5f2e4db224e8983f1741fb0430541 schema:name dimensions_id
102 schema:value pub.1041981239
103 rdf:type schema:PropertyValue
104 N60d9991ac2834fd9975940601abd9dbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Middle Aged
106 rdf:type schema:DefinedTerm
107 N702d26fe4f4547bba41ef8a918c1d942 schema:volumeNumber 20
108 rdf:type schema:PublicationVolume
109 N7115c62fa7384d4987bcfb5b83e2c17a schema:name pubmed_id
110 schema:value 23338481
111 rdf:type schema:PropertyValue
112 N7aea267705e24f01b1e9020967ab08e9 schema:name readcube_id
113 schema:value c7fab7c15cff53a0d8c27476b0aaf9d5c3cc5c442cdf3dfaf6922e0ce517c1c5
114 rdf:type schema:PropertyValue
115 N8a8cf4f4d7654951b13cdd9793bfed16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Lymph Nodes
117 rdf:type schema:DefinedTerm
118 N925ebfc65c3f45eeb98308939d0a1ee8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Aged
120 rdf:type schema:DefinedTerm
121 N96ecb759ecc14dd19ba547889d90c13d rdf:first sg:person.01354014762.57
122 rdf:rest Ne82ccb861048402dbd37f54fdc87c9e8
123 Naa1e3ba628474bb58ec1a50b806f1d2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Contrast Media
125 rdf:type schema:DefinedTerm
126 Naf9b0d19dfa649549159b74cfcbdeb9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Humans
128 rdf:type schema:DefinedTerm
129 Nb27df7c95f6c4b37b7018bae5bbee4f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Technetium Compounds
131 rdf:type schema:DefinedTerm
132 Nb6a104e1520c433191a2b4b5726d6884 schema:name doi
133 schema:value 10.1245/s10434-012-2855-8
134 rdf:type schema:PropertyValue
135 Nbf916ab3be604871a8a6e1c06cc1ccb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Ethiodized Oil
137 rdf:type schema:DefinedTerm
138 Nc30a58b5bf634532920d4b3f0aa65175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aged, 80 and over
140 rdf:type schema:DefinedTerm
141 Nc61bd6860e7645949abad265b2147903 rdf:first sg:person.0766304604.74
142 rdf:rest N02090122ad454029a6f7626eb4caf910
143 Nd2cd865df5924998bb189a7f2dc6017c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Stomach Neoplasms
145 rdf:type schema:DefinedTerm
146 Nd5c5e1cc2730488981584b63b43e1f56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Preoperative Period
148 rdf:type schema:DefinedTerm
149 Nd75a07ed42594c95b66e45412821f597 schema:name nlm_unique_id
150 schema:value 9420840
151 rdf:type schema:PropertyValue
152 Ndfb5f295c2b240c296c947ea90c6efac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Coloring Agents
154 rdf:type schema:DefinedTerm
155 Ne82ccb861048402dbd37f54fdc87c9e8 rdf:first sg:person.014357233714.08
156 rdf:rest Nf1d0f669aa524a42891f3b5e0ef6adb7
157 Nea322959195b45e78600a29663fddcdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Male
159 rdf:type schema:DefinedTerm
160 Nf1d0f669aa524a42891f3b5e0ef6adb7 rdf:first sg:person.015751011744.72
161 rdf:rest rdf:nil
162 Nf5eefca603284d2cb2622a3b40df689a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Radiopharmaceuticals
164 rdf:type schema:DefinedTerm
165 Nf9ac2f6cf1cd4adcb1f4a5067b90e73f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Adult
167 rdf:type schema:DefinedTerm
168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
169 schema:name Medical and Health Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
172 schema:name Clinical Sciences
173 rdf:type schema:DefinedTerm
174 sg:journal.1105545 schema:issn 1068-9265
175 1534-4681
176 schema:name Annals of Surgical Oncology
177 rdf:type schema:Periodical
178 sg:person.01354014762.57 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
179 schema:familyName Shin
180 schema:givenName Cheol-Min
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354014762.57
182 rdf:type schema:Person
183 sg:person.014104715634.26 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
184 schema:familyName Park
185 schema:givenName Do Joong
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104715634.26
187 rdf:type schema:Person
188 sg:person.014357233714.08 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
189 schema:familyName Lee
190 schema:givenName Hye Seung
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357233714.08
192 rdf:type schema:Person
193 sg:person.015510376344.15 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
194 schema:familyName Kim
195 schema:givenName Young Hoon
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510376344.15
197 rdf:type schema:Person
198 sg:person.015751011744.72 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
199 schema:familyName Kim
200 schema:givenName Hyung-Ho
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751011744.72
202 rdf:type schema:Person
203 sg:person.0766304604.74 schema:affiliation https://www.grid.ac/institutes/grid.412480.b
204 schema:familyName Lee
205 schema:givenName Ju-Hee
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766304604.74
207 rdf:type schema:Person
208 sg:pub.10.1007/bf02482311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044764340
209 https://doi.org/10.1007/bf02482311
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/pl00011681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030703112
212 https://doi.org/10.1007/pl00011681
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00268-006-0142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004557872
215 https://doi.org/10.1007/s00268-006-0142-1
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s00270-007-9026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014775741
218 https://doi.org/10.1007/s00270-007-9026-5
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s00464-012-2170-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042081474
221 https://doi.org/10.1007/s00464-012-2170-2
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s12282-009-0183-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013492421
224 https://doi.org/10.1007/s12282-009-0183-z
225 rdf:type schema:CreativeWork
226 sg:pub.10.1245/s10434-010-1221-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044544622
227 https://doi.org/10.1245/s10434-010-1221-y
228 rdf:type schema:CreativeWork
229 sg:pub.10.1245/s10434-011-2106-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020425501
230 https://doi.org/10.1245/s10434-011-2106-4
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/bjs.1800820321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024901343
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/jso.20863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012932984
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.ejca.2004.04.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052340278
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.nucmedbio.2010.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012532880
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.surg.2003.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017709643
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s0009-9260(05)80199-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049552334
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s0140-6736(97)01004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011930097
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s1072-7515(02)01594-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755065
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s1072-7515(99)00130-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035587348
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/rli.0b013e3181c8cf19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031566497
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.1349-7006.2010.01706.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052811377
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1200/jco.1997.15.6.2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083106808
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3349/ymj.2010.51.3.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053328619
257 rdf:type schema:CreativeWork
258 https://doi.org/10.4174/jkss.2012.82.2.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027743724
259 rdf:type schema:CreativeWork
260 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
261 schema:name Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea
262 Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.412480.b schema:alternateName Seoul National University Bundang Hospital
265 schema:name Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi, South Korea
266 Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, South Korea
267 Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi, South Korea
268 Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...