Clinical Implementations of Preoperative Computed Tomography Lymphography in Gastric Cancer: A Comparison with Dual Tracer Methods in Sentinel Node Navigation ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01-22

AUTHORS

Ju-Hee Lee, Do Joong Park, Young Hoon Kim, Cheol-Min Shin, Hye Seung Lee, Hyung-Ho Kim

ABSTRACT

BackgroundCurrent sentinel node (SN) detection techniques require a learning period and tracers have many disadvantages for practical use. The purpose of this study was to evaluate the feasibility of preoperative computed tomography (CT) lymphography using lipiodol for detecting SNs in gastric cancer.MethodsA total of 24 patients who underwent laparoscopic surgery for early gastric cancer were enrolled in this study. Noncontrast CT images were obtained 1–2 h after endoscopic submucosal peritumoral injection of 1 mL of lipiodol the day before surgery. The final sentinel basins (SBs) were decided by the dual tracer method (indocyanine green plus 99mTc-antimony sulfur colloid) during laparoscopic gastrectomy. SN detection rate by preoperative CT lymphography using lipiodol and agreement between CT lymphography versus dual tracer method were evaluated. The agreement was confirmed with soft X-ray radiography of detected SBs.ResultsTechnical failure of endoscopic lipiodol injection occurred in one patient. SNs were successfully detected in the remaining 23 patients (95.8 %), whereas the intraoperative SB detection rate using the dual method was 100 %. The agreement rate, defined as the concordance between two methods or inclusion of SNs detected by CT lymphography in SBs by the dual tracer method, was 87 %.ConclusionsOur initial experience of CT lymphography using lipiodol shows good potential in predicting SBs of gastric cancer preoperatively. However, SN detection by CT lymphography and the dual method should be applied complementarily in gastric cancer because discrepancies between these methods occur. More... »

PAGES

2296-2303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8

DOI

http://dx.doi.org/10.1245/s10434-012-2855-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041981239

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23338481


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antimony", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coloring Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethiodized Oil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indocyanine Green", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laparoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preoperative Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ju-Hee", 
        "id": "sg:person.0667052155.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667052155.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
            "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Do Joong", 
        "id": "sg:person.01242422666.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242422666.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Hoon", 
        "id": "sg:person.015510376344.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510376344.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Cheol-Min", 
        "id": "sg:person.01354014762.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354014762.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hye Seung", 
        "id": "sg:person.014357233714.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357233714.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea", 
            "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyung-Ho", 
        "id": "sg:person.015751011744.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751011744.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02482311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044764340", 
          "https://doi.org/10.1007/bf02482311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030703112", 
          "https://doi.org/10.1007/pl00011681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-006-0142-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004557872", 
          "https://doi.org/10.1007/s00268-006-0142-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-012-2170-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042081474", 
          "https://doi.org/10.1007/s00464-012-2170-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-011-2106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020425501", 
          "https://doi.org/10.1245/s10434-011-2106-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-007-9026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014775741", 
          "https://doi.org/10.1007/s00270-007-9026-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12282-009-0183-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013492421", 
          "https://doi.org/10.1007/s12282-009-0183-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044544622", 
          "https://doi.org/10.1245/s10434-010-1221-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-22", 
    "datePublishedReg": "2013-01-22", 
    "description": "BackgroundCurrent sentinel node (SN) detection techniques require a learning period and tracers have many disadvantages for practical use. The purpose of this study was to evaluate the feasibility of preoperative computed tomography (CT) lymphography using lipiodol for detecting SNs in gastric cancer.MethodsA total of 24 patients who underwent laparoscopic surgery for early gastric cancer were enrolled in this study. Noncontrast CT images were obtained 1\u20132\u00a0h after endoscopic submucosal peritumoral injection of 1\u00a0mL of lipiodol the day before surgery. The final sentinel basins (SBs) were decided by the dual tracer method (indocyanine green plus 99mTc-antimony sulfur colloid) during laparoscopic gastrectomy. SN detection rate by preoperative CT lymphography using lipiodol and agreement between CT lymphography versus dual tracer method were evaluated. The agreement was confirmed with soft X-ray radiography of detected SBs.ResultsTechnical failure of endoscopic lipiodol injection occurred in one patient. SNs were successfully detected in the remaining 23 patients (95.8\u00a0%), whereas the intraoperative SB detection rate using the dual method was 100\u00a0%. The agreement rate, defined as the concordance between two methods or inclusion of SNs detected by CT lymphography in SBs by the dual tracer method, was 87\u00a0%.ConclusionsOur initial experience of CT lymphography using lipiodol shows good potential in predicting SBs of gastric cancer preoperatively. However, SN detection by CT lymphography and the dual method should be applied complementarily in gastric cancer because discrepancies between these methods occur.", 
    "genre": "article", 
    "id": "sg:pub.10.1245/s10434-012-2855-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "sentinel basins", 
      "gastric cancer", 
      "CT lymphography", 
      "computed tomography lymphography", 
      "dual tracer method", 
      "tomography lymphography", 
      "sentinel node navigation surgery", 
      "preoperative CT lymphography", 
      "early gastric cancer", 
      "mL of lipiodol", 
      "SN detection rate", 
      "noncontrast CT images", 
      "laparoscopic gastrectomy", 
      "peritumoral injection", 
      "lipiodol injection", 
      "laparoscopic surgery", 
      "navigation surgery", 
      "detection rate", 
      "initial experience", 
      "Lipiodol", 
      "cancer", 
      "lymphography", 
      "patients", 
      "surgery", 
      "SN detection", 
      "clinical implementation", 
      "agreement rate", 
      "CT images", 
      "injection", 
      "gastrectomy", 
      "learning period", 
      "CT", 
      "rate", 
      "radiography", 
      "total", 
      "study", 
      "days", 
      "concordance", 
      "failure", 
      "mL", 
      "tracer method", 
      "inclusion of Sn", 
      "period", 
      "experience", 
      "tracer", 
      "use", 
      "purpose", 
      "method", 
      "inclusion", 
      "feasibility", 
      "detection", 
      "discrepancy", 
      "potential", 
      "comparison", 
      "disadvantages", 
      "technique", 
      "dual method", 
      "good potential", 
      "ray radiography", 
      "images", 
      "agreement", 
      "implementation", 
      "practical use", 
      "detection techniques", 
      "Sn", 
      "basin", 
      "BackgroundCurrent sentinel node (SN) detection techniques", 
      "sentinel node (SN) detection techniques", 
      "node (SN) detection techniques", 
      "preoperative computed tomography (CT) lymphography", 
      "endoscopic submucosal peritumoral injection", 
      "submucosal peritumoral injection", 
      "final sentinel basins", 
      "ResultsTechnical failure", 
      "endoscopic lipiodol injection", 
      "intraoperative SB detection rate", 
      "SB detection rate", 
      "Node Navigation Surgery"
    ], 
    "name": "Clinical Implementations of Preoperative Computed Tomography Lymphography in Gastric Cancer: A Comparison with Dual Tracer Methods in Sentinel Node Navigation Surgery", 
    "pagination": "2296-2303", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041981239"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-012-2855-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23338481"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-012-2855-8", 
      "https://app.dimensions.ai/details/publication/pub.1041981239"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1245/s10434-012-2855-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2855-8'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      22 PREDICATES      134 URIs      117 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-012-2855-8 schema:about N0131fbee94624f549f3bbcadf2895f59
2 N0ce503f415eb479eb2097fccf97e9885
3 N1831a1e9447d47278df7fce52d5db7a5
4 N1df9fbc362b241d69329a5efd95e33f2
5 N3a423a6185b44db0ac646ac4a1e58999
6 N3b0e4f3bc5f046ea9a4519bbc26cff3a
7 N42ccdd0a93e9444bad964a0cd29a40d3
8 N72520340055a488ab6c5693bc0619299
9 N7676dc7e503a431cbe842a325733b99d
10 N80f565f346834864a366226bc3557255
11 N85ea2583ee7b4673ac3938cc0317a1d6
12 N9ac0b359e2824413a94d119fc2edb34a
13 N9bcdefe102d9483bac8eb55f50c256d9
14 Nb268c8086f944048a9ff43284ffdd982
15 Nb39a1db0b904446bbc053873333813ea
16 Nb55701dcc507459fbed15918bd48131a
17 Nb637132480f04d678d5c490257bb2e21
18 Nba5716f72fcb4b309bf52dc0b3c69626
19 Nbc0fefaa77524229b94951983c17f14a
20 Nbf190f5ac20a4184babe78e287c8c6d6
21 Ne46d7caa3f7244c48073c7bc5fce7094
22 anzsrc-for:11
23 anzsrc-for:1103
24 anzsrc-for:1112
25 schema:author N2019377c37f74cefbcc8d6bd505dcdd4
26 schema:citation sg:pub.10.1007/bf02482311
27 sg:pub.10.1007/pl00011681
28 sg:pub.10.1007/s00268-006-0142-1
29 sg:pub.10.1007/s00270-007-9026-5
30 sg:pub.10.1007/s00464-012-2170-2
31 sg:pub.10.1007/s12282-009-0183-z
32 sg:pub.10.1245/s10434-010-1221-y
33 sg:pub.10.1245/s10434-011-2106-4
34 schema:datePublished 2013-01-22
35 schema:datePublishedReg 2013-01-22
36 schema:description BackgroundCurrent sentinel node (SN) detection techniques require a learning period and tracers have many disadvantages for practical use. The purpose of this study was to evaluate the feasibility of preoperative computed tomography (CT) lymphography using lipiodol for detecting SNs in gastric cancer.MethodsA total of 24 patients who underwent laparoscopic surgery for early gastric cancer were enrolled in this study. Noncontrast CT images were obtained 1–2 h after endoscopic submucosal peritumoral injection of 1 mL of lipiodol the day before surgery. The final sentinel basins (SBs) were decided by the dual tracer method (indocyanine green plus 99mTc-antimony sulfur colloid) during laparoscopic gastrectomy. SN detection rate by preoperative CT lymphography using lipiodol and agreement between CT lymphography versus dual tracer method were evaluated. The agreement was confirmed with soft X-ray radiography of detected SBs.ResultsTechnical failure of endoscopic lipiodol injection occurred in one patient. SNs were successfully detected in the remaining 23 patients (95.8 %), whereas the intraoperative SB detection rate using the dual method was 100 %. The agreement rate, defined as the concordance between two methods or inclusion of SNs detected by CT lymphography in SBs by the dual tracer method, was 87 %.ConclusionsOur initial experience of CT lymphography using lipiodol shows good potential in predicting SBs of gastric cancer preoperatively. However, SN detection by CT lymphography and the dual method should be applied complementarily in gastric cancer because discrepancies between these methods occur.
37 schema:genre article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N9311cd5437ab43799a446fe8ec9af739
41 Ne22365c8a4ec4535b0fd16f275063154
42 sg:journal.1105545
43 schema:keywords BackgroundCurrent sentinel node (SN) detection techniques
44 CT
45 CT images
46 CT lymphography
47 Lipiodol
48 Node Navigation Surgery
49 ResultsTechnical failure
50 SB detection rate
51 SN detection
52 SN detection rate
53 Sn
54 agreement
55 agreement rate
56 basin
57 cancer
58 clinical implementation
59 comparison
60 computed tomography lymphography
61 concordance
62 days
63 detection
64 detection rate
65 detection techniques
66 disadvantages
67 discrepancy
68 dual method
69 dual tracer method
70 early gastric cancer
71 endoscopic lipiodol injection
72 endoscopic submucosal peritumoral injection
73 experience
74 failure
75 feasibility
76 final sentinel basins
77 gastrectomy
78 gastric cancer
79 good potential
80 images
81 implementation
82 inclusion
83 inclusion of Sn
84 initial experience
85 injection
86 intraoperative SB detection rate
87 laparoscopic gastrectomy
88 laparoscopic surgery
89 learning period
90 lipiodol injection
91 lymphography
92 mL
93 mL of lipiodol
94 method
95 navigation surgery
96 node (SN) detection techniques
97 noncontrast CT images
98 patients
99 period
100 peritumoral injection
101 potential
102 practical use
103 preoperative CT lymphography
104 preoperative computed tomography (CT) lymphography
105 purpose
106 radiography
107 rate
108 ray radiography
109 sentinel basins
110 sentinel node (SN) detection techniques
111 sentinel node navigation surgery
112 study
113 submucosal peritumoral injection
114 surgery
115 technique
116 tomography lymphography
117 total
118 tracer
119 tracer method
120 use
121 schema:name Clinical Implementations of Preoperative Computed Tomography Lymphography in Gastric Cancer: A Comparison with Dual Tracer Methods in Sentinel Node Navigation Surgery
122 schema:pagination 2296-2303
123 schema:productId N8f5dfb374e504533bf9e09e61a40a2ca
124 Ndde85138bb564f1f8263aa25ac451b73
125 Nfde9b47b360e443e817503fc040d7bac
126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041981239
127 https://doi.org/10.1245/s10434-012-2855-8
128 schema:sdDatePublished 2021-12-01T19:29
129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
130 schema:sdPublisher N0f786df99d464bb99f921a341e3f2a39
131 schema:url https://doi.org/10.1245/s10434-012-2855-8
132 sgo:license sg:explorer/license/
133 sgo:sdDataset articles
134 rdf:type schema:ScholarlyArticle
135 N0131fbee94624f549f3bbcadf2895f59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Technetium Compounds
137 rdf:type schema:DefinedTerm
138 N0ce503f415eb479eb2097fccf97e9885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Coloring Agents
140 rdf:type schema:DefinedTerm
141 N0f786df99d464bb99f921a341e3f2a39 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N1831a1e9447d47278df7fce52d5db7a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Antimony
145 rdf:type schema:DefinedTerm
146 N1df9fbc362b241d69329a5efd95e33f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Preoperative Period
148 rdf:type schema:DefinedTerm
149 N2019377c37f74cefbcc8d6bd505dcdd4 rdf:first sg:person.0667052155.09
150 rdf:rest N644b9bf86a0e47369e8f3edc87ad695d
151 N3a423a6185b44db0ac646ac4a1e58999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Middle Aged
153 rdf:type schema:DefinedTerm
154 N3b0e4f3bc5f046ea9a4519bbc26cff3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adult
156 rdf:type schema:DefinedTerm
157 N42ccdd0a93e9444bad964a0cd29a40d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Ethiodized Oil
159 rdf:type schema:DefinedTerm
160 N4c5779f62f2245d6b95a6c3d0ed87ae7 rdf:first sg:person.015510376344.15
161 rdf:rest N99f8a28d8dc44342adf58e167ccce87c
162 N644b9bf86a0e47369e8f3edc87ad695d rdf:first sg:person.01242422666.10
163 rdf:rest N4c5779f62f2245d6b95a6c3d0ed87ae7
164 N72520340055a488ab6c5693bc0619299 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Radiopharmaceuticals
166 rdf:type schema:DefinedTerm
167 N7676dc7e503a431cbe842a325733b99d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Tomography, X-Ray Computed
169 rdf:type schema:DefinedTerm
170 N80f565f346834864a366226bc3557255 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Sentinel Lymph Node Biopsy
172 rdf:type schema:DefinedTerm
173 N85ea2583ee7b4673ac3938cc0317a1d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Aged, 80 and over
175 rdf:type schema:DefinedTerm
176 N8f5dfb374e504533bf9e09e61a40a2ca schema:name doi
177 schema:value 10.1245/s10434-012-2855-8
178 rdf:type schema:PropertyValue
179 N9311cd5437ab43799a446fe8ec9af739 schema:volumeNumber 20
180 rdf:type schema:PublicationVolume
181 N99f8a28d8dc44342adf58e167ccce87c rdf:first sg:person.01354014762.57
182 rdf:rest Nd78e773bfcd84b4d9352374b2bfb58ee
183 N9ac0b359e2824413a94d119fc2edb34a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Female
185 rdf:type schema:DefinedTerm
186 N9bcdefe102d9483bac8eb55f50c256d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Stomach Neoplasms
188 rdf:type schema:DefinedTerm
189 Nb268c8086f944048a9ff43284ffdd982 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Male
191 rdf:type schema:DefinedTerm
192 Nb39a1db0b904446bbc053873333813ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Humans
194 rdf:type schema:DefinedTerm
195 Nb55701dcc507459fbed15918bd48131a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Indocyanine Green
197 rdf:type schema:DefinedTerm
198 Nb637132480f04d678d5c490257bb2e21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Lymph Nodes
200 rdf:type schema:DefinedTerm
201 Nba5716f72fcb4b309bf52dc0b3c69626 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Aged
203 rdf:type schema:DefinedTerm
204 Nbc0fefaa77524229b94951983c17f14a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Laparoscopy
206 rdf:type schema:DefinedTerm
207 Nbf190f5ac20a4184babe78e287c8c6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Radionuclide Imaging
209 rdf:type schema:DefinedTerm
210 Nd78e773bfcd84b4d9352374b2bfb58ee rdf:first sg:person.014357233714.08
211 rdf:rest Ne3613adcd7544d6097e2c8dff8d73c73
212 Ndde85138bb564f1f8263aa25ac451b73 schema:name dimensions_id
213 schema:value pub.1041981239
214 rdf:type schema:PropertyValue
215 Ne22365c8a4ec4535b0fd16f275063154 schema:issueNumber 7
216 rdf:type schema:PublicationIssue
217 Ne3613adcd7544d6097e2c8dff8d73c73 rdf:first sg:person.015751011744.72
218 rdf:rest rdf:nil
219 Ne46d7caa3f7244c48073c7bc5fce7094 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Contrast Media
221 rdf:type schema:DefinedTerm
222 Nfde9b47b360e443e817503fc040d7bac schema:name pubmed_id
223 schema:value 23338481
224 rdf:type schema:PropertyValue
225 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
226 schema:name Medical and Health Sciences
227 rdf:type schema:DefinedTerm
228 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
229 schema:name Clinical Sciences
230 rdf:type schema:DefinedTerm
231 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
232 schema:name Oncology and Carcinogenesis
233 rdf:type schema:DefinedTerm
234 sg:journal.1105545 schema:issn 1068-9265
235 1534-4681
236 schema:name Annals of Surgical Oncology
237 schema:publisher Springer Nature
238 rdf:type schema:Periodical
239 sg:person.01242422666.10 schema:affiliation grid-institutes:grid.31501.36
240 schema:familyName Park
241 schema:givenName Do Joong
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242422666.10
243 rdf:type schema:Person
244 sg:person.01354014762.57 schema:affiliation grid-institutes:grid.412480.b
245 schema:familyName Shin
246 schema:givenName Cheol-Min
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354014762.57
248 rdf:type schema:Person
249 sg:person.014357233714.08 schema:affiliation grid-institutes:grid.412480.b
250 schema:familyName Lee
251 schema:givenName Hye Seung
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357233714.08
253 rdf:type schema:Person
254 sg:person.015510376344.15 schema:affiliation grid-institutes:grid.412480.b
255 schema:familyName Kim
256 schema:givenName Young Hoon
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510376344.15
258 rdf:type schema:Person
259 sg:person.015751011744.72 schema:affiliation grid-institutes:grid.31501.36
260 schema:familyName Kim
261 schema:givenName Hyung-Ho
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751011744.72
263 rdf:type schema:Person
264 sg:person.0667052155.09 schema:affiliation grid-institutes:grid.412480.b
265 schema:familyName Lee
266 schema:givenName Ju-Hee
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667052155.09
268 rdf:type schema:Person
269 sg:pub.10.1007/bf02482311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044764340
270 https://doi.org/10.1007/bf02482311
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/pl00011681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030703112
273 https://doi.org/10.1007/pl00011681
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/s00268-006-0142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004557872
276 https://doi.org/10.1007/s00268-006-0142-1
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/s00270-007-9026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014775741
279 https://doi.org/10.1007/s00270-007-9026-5
280 rdf:type schema:CreativeWork
281 sg:pub.10.1007/s00464-012-2170-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042081474
282 https://doi.org/10.1007/s00464-012-2170-2
283 rdf:type schema:CreativeWork
284 sg:pub.10.1007/s12282-009-0183-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013492421
285 https://doi.org/10.1007/s12282-009-0183-z
286 rdf:type schema:CreativeWork
287 sg:pub.10.1245/s10434-010-1221-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044544622
288 https://doi.org/10.1245/s10434-010-1221-y
289 rdf:type schema:CreativeWork
290 sg:pub.10.1245/s10434-011-2106-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020425501
291 https://doi.org/10.1245/s10434-011-2106-4
292 rdf:type schema:CreativeWork
293 grid-institutes:grid.31501.36 schema:alternateName Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
294 schema:name Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea
295 Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
296 rdf:type schema:Organization
297 grid-institutes:grid.412480.b schema:alternateName Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi, South Korea
298 Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, South Korea
299 Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi, South Korea
300 Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea
301 schema:name Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi, South Korea
302 Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi, South Korea
303 Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi, South Korea
304 Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi, South Korea
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...