Comparison of Molecular Subtyping with BluePrint, MammaPrint, and TargetPrint to Local Clinical Subtyping in Breast Cancer Patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10

AUTHORS

Bichlien Nguyen, Pino G. Cusumano, Kenneth Deck, Deborah Kerlin, Agustin A. Garcia, Julie L. Barone, Edgardo Rivera, Katharine Yao, Femke A. de Snoo, Jeroen van den Akker, Lisette Stork-Sloots, Daniele Generali

ABSTRACT

PURPOSE: To compare breast cancer subtyping with the three centrally assessed microarray-based assays BluePrint, MammaPrint, and TargetPrint with locally assessed clinical subtyping using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). METHODS: BluePrint, MammaPrint, and TargetPrint were all performed on fresh tumor samples. Microarray analysis was performed at Agendia Laboratories, blinded for clinical and pathological data. IHC/FISH assessments were performed according to local practice at each institution; estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) assessments were performed on 132 samples, and Ki-67 on 79 samples. RESULTS: The concordance between BluePrint and IHC/FISH subtyping was 94 % for the Luminal-type, 95 % for the HER2-type, and 94 % for the Basal-type subgroups. The concordance of BluePrint with subtyping using mRNA single gene readout (TargetPrint) was 96 % for the Luminal-type, 97 % for the HER2-type, and 98 % for the Basal-type subgroups. The concordance for substratification into Luminal A and B using MammaPrint and Ki-67 was 68 %. The concordance between TargetPrint and IHC/FISH was 97 % for ER, 80 % for PR, and 95 % for HER2. CONCLUSIONS: The implementation of multigene assays such as TargetPrint, BluePrint, and MammaPrint may improve the clinical management of breast cancer patients. High discordance between Luminal A and B substratification based on MammaPrint versus locally assessed Ki-67 or grade indicates that chemotherapy decisions should not be based on the basis of Ki-67 readout or tumor grade alone. TargetPrint serves as a second opinion for those local pathology settings where high-quality standardization is harder to maintain. More... »

PAGES

3257-3263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-012-2561-6

DOI

http://dx.doi.org/10.1245/s10434-012-2561-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016994220

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22965266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoenzyme Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Situ Hybridization, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ki-67 Antigen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microarray Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Grading", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Progesterone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Long Beach Memorial Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.415304.7", 
          "name": [
            "Department of Medicine, Todd Cancer Institute, Long Beach Memorial Medical Center, Long Beach, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Bichlien", 
        "id": "sg:person.0761063635.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761063635.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinic of Hope", 
          "id": "https://www.grid.ac/institutes/grid.477026.0", 
          "name": [
            "Department of Surgical Oncology, CHC, Liege, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cusumano", 
        "givenName": "Pino G.", 
        "id": "sg:person.01033751672.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033751672.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saddleback Memorial Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416405.2", 
          "name": [
            "Department of Surgical Oncology, Saddleback Memorial Medical Center, Laguna Hills, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deck", 
        "givenName": "Kenneth", 
        "id": "sg:person.01075312235.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075312235.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery, John Muir, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerlin", 
        "givenName": "Deborah", 
        "id": "sg:person.01143425435.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143425435.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Division of Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Agustin A.", 
        "id": "sg:person.01211540635.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211540635.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sharp Memorial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415655.6", 
          "name": [
            "Department of Surgery, Comprehensive Breast Care of San Diego and Sharp Memorial Hospital, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barone", 
        "givenName": "Julie L.", 
        "id": "sg:person.01257654035.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257654035.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Medical Oncology, The Methodist Hospital/Weill Cornell University, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rivera", 
        "givenName": "Edgardo", 
        "id": "sg:person.01325767235.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325767235.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NorthShore University HealthSystem", 
          "id": "https://www.grid.ac/institutes/grid.240372.0", 
          "name": [
            "Department of Surgical Oncology, North Shore University Health System, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Katharine", 
        "id": "sg:person.01265017241.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265017241.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Agendia N.V., Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Snoo", 
        "givenName": "Femke A.", 
        "id": "sg:person.01167175573.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167175573.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Agendia N.V., Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Akker", 
        "givenName": "Jeroen", 
        "id": "sg:person.0716611535.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716611535.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Agendia N.V., Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stork-Sloots", 
        "givenName": "Lisette", 
        "id": "sg:person.0764724735.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764724735.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituti Ospitalieri di Cremona", 
          "id": "https://www.grid.ac/institutes/grid.419450.d", 
          "name": [
            "Department of Medical Oncology, U.O.M. Patologia Mammaria-Laboratorio di Oncologia Molecolare Senologica, A.O. Istituti Ospitalieri di Cremona, Cremona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Generali", 
        "givenName": "Daniele", 
        "id": "sg:person.0723757005.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723757005.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-0449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002055562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdr304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009166329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015285825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djp082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020655992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-10-1282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021940935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1309/4d1a04ncdk96wfy7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022759445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2325/jbcs.976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028729188", 
          "https://doi.org/10.2325/jbcs.976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2325/jbcs.976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028729188", 
          "https://doi.org/10.2325/jbcs.976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-011-1683-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032799097", 
          "https://doi.org/10.1007/s10549-011-1683-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra0801289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039409706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdp322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042592360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdp322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042592360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052494272", 
          "https://doi.org/10.1186/1471-2164-7-278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.sabcs11-p1-07-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063220022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.sabcs11-p5-11-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063220838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijmm_00000532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071510060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "PURPOSE: To compare breast cancer subtyping with the three centrally assessed microarray-based assays BluePrint, MammaPrint, and TargetPrint with locally assessed clinical subtyping using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH).\nMETHODS: BluePrint, MammaPrint, and TargetPrint were all performed on fresh tumor samples. Microarray analysis was performed at Agendia Laboratories, blinded for clinical and pathological data. IHC/FISH assessments were performed according to local practice at each institution; estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) assessments were performed on 132 samples, and Ki-67 on 79 samples.\nRESULTS: The concordance between BluePrint and IHC/FISH subtyping was 94 % for the Luminal-type, 95 % for the HER2-type, and 94 % for the Basal-type subgroups. The concordance of BluePrint with subtyping using mRNA single gene readout (TargetPrint) was 96 % for the Luminal-type, 97 % for the HER2-type, and 98 % for the Basal-type subgroups. The concordance for substratification into Luminal A and B using MammaPrint and Ki-67 was 68 %. The concordance between TargetPrint and IHC/FISH was 97 % for ER, 80 % for PR, and 95 % for HER2.\nCONCLUSIONS: The implementation of multigene assays such as TargetPrint, BluePrint, and MammaPrint may improve the clinical management of breast cancer patients. High discordance between Luminal A and B substratification based on MammaPrint versus locally assessed Ki-67 or grade indicates that chemotherapy decisions should not be based on the basis of Ki-67 readout or tumor grade alone. TargetPrint serves as a second opinion for those local pathology settings where high-quality standardization is harder to maintain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1245/s10434-012-2561-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Comparison of Molecular Subtyping with BluePrint, MammaPrint, and TargetPrint to Local Clinical Subtyping in Breast Cancer Patients", 
    "pagination": "3257-3263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50f7c1355d912f039d31d9f5f84574a7d2331589c48692b4da6ecc05c547d825"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22965266"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9420840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-012-2561-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016994220"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-012-2561-6", 
      "https://app.dimensions.ai/details/publication/pub.1016994220"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1245/s10434-012-2561-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2561-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2561-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2561-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-012-2561-6'


 

This table displays all metadata directly associated to this object as RDF triples.

304 TRIPLES      21 PREDICATES      64 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-012-2561-6 schema:about N1d08900f3b62446b9aec07ea1210a8bc
2 N2d79dfa088204b5ea5776be5a22e5315
3 N44d7943a4efb473fa1074e53af0b7f51
4 N45a84b4a57d346dfa5fe2c84cee7d9af
5 N58b8e8ff627b4e208f90d1b75555eba9
6 N8386f2c5446145d0a661a93e893c9e72
7 N88b62457771a4d56be6241e80392c3dd
8 N8be3d549fa3e44c3911a06602d7b181f
9 N947f42fcd5b14684a71885033e2522d1
10 N96bf2465424f486d977e4daae4d2c6ec
11 N9a891bade90d4f5b88e58620ed8fdc63
12 Nacda0c9a7ab049e7b0824432af0e748d
13 Nca855db9de9340dfb9251870abb07f20
14 Ncfb881223b4b4d40ab2e0290690cc3c5
15 Nd3d07e0bedff4f0f8599d7cb9487c8fa
16 Nd44e9d360a0e478cb374ec7ae8aa40c2
17 Ndc999ccbf4034a179ac1d3fbaa3a09c0
18 Ne5252d6fd43046109d7889e2be13a9e8
19 Nea1d09470a1540c4bbe818daca6c16e5
20 Necf98a41d60944a08a3c7e815df78bcd
21 anzsrc-for:11
22 anzsrc-for:1112
23 schema:author Nbf184470584f4f4d96e53dc8ccc313a2
24 schema:citation sg:pub.10.1007/s10549-011-1683-z
25 sg:pub.10.1038/35021093
26 sg:pub.10.1186/1471-2164-7-278
27 sg:pub.10.2325/jbcs.976
28 https://doi.org/10.1056/nejmra0801289
29 https://doi.org/10.1093/annonc/mdp322
30 https://doi.org/10.1093/annonc/mdr304
31 https://doi.org/10.1093/jnci/djp082
32 https://doi.org/10.1158/0008-5472.sabcs11-p1-07-06
33 https://doi.org/10.1158/0008-5472.sabcs11-p5-11-09
34 https://doi.org/10.1158/1078-0432.ccr-09-0449
35 https://doi.org/10.1158/1078-0432.ccr-10-1282
36 https://doi.org/10.1309/4d1a04ncdk96wfy7
37 https://doi.org/10.1371/journal.pmed.1000279
38 https://doi.org/10.3892/ijmm_00000532
39 schema:datePublished 2012-10
40 schema:datePublishedReg 2012-10-01
41 schema:description PURPOSE: To compare breast cancer subtyping with the three centrally assessed microarray-based assays BluePrint, MammaPrint, and TargetPrint with locally assessed clinical subtyping using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). METHODS: BluePrint, MammaPrint, and TargetPrint were all performed on fresh tumor samples. Microarray analysis was performed at Agendia Laboratories, blinded for clinical and pathological data. IHC/FISH assessments were performed according to local practice at each institution; estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) assessments were performed on 132 samples, and Ki-67 on 79 samples. RESULTS: The concordance between BluePrint and IHC/FISH subtyping was 94 % for the Luminal-type, 95 % for the HER2-type, and 94 % for the Basal-type subgroups. The concordance of BluePrint with subtyping using mRNA single gene readout (TargetPrint) was 96 % for the Luminal-type, 97 % for the HER2-type, and 98 % for the Basal-type subgroups. The concordance for substratification into Luminal A and B using MammaPrint and Ki-67 was 68 %. The concordance between TargetPrint and IHC/FISH was 97 % for ER, 80 % for PR, and 95 % for HER2. CONCLUSIONS: The implementation of multigene assays such as TargetPrint, BluePrint, and MammaPrint may improve the clinical management of breast cancer patients. High discordance between Luminal A and B substratification based on MammaPrint versus locally assessed Ki-67 or grade indicates that chemotherapy decisions should not be based on the basis of Ki-67 readout or tumor grade alone. TargetPrint serves as a second opinion for those local pathology settings where high-quality standardization is harder to maintain.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf Naa193b640f684e87b740cf4421cfb665
46 Nf76d3dd9524549efa56116cb96f1bca8
47 sg:journal.1105545
48 schema:name Comparison of Molecular Subtyping with BluePrint, MammaPrint, and TargetPrint to Local Clinical Subtyping in Breast Cancer Patients
49 schema:pagination 3257-3263
50 schema:productId N59161c773606421cbc7330bca90cddab
51 N5b99dd38c4d34e68a57949f63376c486
52 N7432306c62ed4f0fa88e0f660b227552
53 Nd263b6d820f0419d9b003f9c8c149671
54 Nfea722cb660b45af9e87f99100631929
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016994220
56 https://doi.org/10.1245/s10434-012-2561-6
57 schema:sdDatePublished 2019-04-10T21:34
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N3e437bff05b74f85a128f40a3c1a6752
60 schema:url http://link.springer.com/10.1245/s10434-012-2561-6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N01c9b434d3bc4e8aba26ee4ae72607f7 schema:name Agendia N.V., Amsterdam, The Netherlands
65 rdf:type schema:Organization
66 N0da6cd3372294379ad780dfa964b96f5 rdf:first sg:person.0764724735.42
67 rdf:rest N5fc19f97eef1416985a6a8f625d6b66a
68 N1d08900f3b62446b9aec07ea1210a8bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Middle Aged
70 rdf:type schema:DefinedTerm
71 N2d79dfa088204b5ea5776be5a22e5315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Receptors, Estrogen
73 rdf:type schema:DefinedTerm
74 N3ce1856107c949fdb62ff74ab4ef2b7e rdf:first sg:person.01033751672.61
75 rdf:rest N8ab9255709c94beaa7d83756a78629c8
76 N3e437bff05b74f85a128f40a3c1a6752 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N44d7943a4efb473fa1074e53af0b7f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Aged, 80 and over
80 rdf:type schema:DefinedTerm
81 N45a84b4a57d346dfa5fe2c84cee7d9af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Aged
83 rdf:type schema:DefinedTerm
84 N53df185f1cb74f94828c009877eb02b3 rdf:first sg:person.0716611535.12
85 rdf:rest N0da6cd3372294379ad780dfa964b96f5
86 N57e445c9669a4741bdc5a1d5cbbc137c schema:name Agendia N.V., Amsterdam, The Netherlands
87 rdf:type schema:Organization
88 N58b8e8ff627b4e208f90d1b75555eba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Humans
90 rdf:type schema:DefinedTerm
91 N59161c773606421cbc7330bca90cddab schema:name readcube_id
92 schema:value 50f7c1355d912f039d31d9f5f84574a7d2331589c48692b4da6ecc05c547d825
93 rdf:type schema:PropertyValue
94 N5b99dd38c4d34e68a57949f63376c486 schema:name dimensions_id
95 schema:value pub.1016994220
96 rdf:type schema:PropertyValue
97 N5c877071ffdb43ed9cffd5e248410aee rdf:first sg:person.01211540635.05
98 rdf:rest N9e0186b106d74e64a28610a316f98e71
99 N5fc19f97eef1416985a6a8f625d6b66a rdf:first sg:person.0723757005.25
100 rdf:rest rdf:nil
101 N6c824fde3c7f473da192bcda65f23cc7 schema:name Department of Surgery, John Muir, Walnut Creek, CA, USA
102 rdf:type schema:Organization
103 N7432306c62ed4f0fa88e0f660b227552 schema:name pubmed_id
104 schema:value 22965266
105 rdf:type schema:PropertyValue
106 N7bb04d098140444da523a00367682d24 schema:name Agendia N.V., Amsterdam, The Netherlands
107 rdf:type schema:Organization
108 N8386f2c5446145d0a661a93e893c9e72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Survival Rate
110 rdf:type schema:DefinedTerm
111 N88b62457771a4d56be6241e80392c3dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name RNA, Messenger
113 rdf:type schema:DefinedTerm
114 N8ab9255709c94beaa7d83756a78629c8 rdf:first sg:person.01075312235.67
115 rdf:rest Nab4235a8da9645ff8b3db6665d3a3843
116 N8be3d549fa3e44c3911a06602d7b181f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Receptor, ErbB-2
118 rdf:type schema:DefinedTerm
119 N947f42fcd5b14684a71885033e2522d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Female
121 rdf:type schema:DefinedTerm
122 N96bf2465424f486d977e4daae4d2c6ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name In Situ Hybridization, Fluorescence
124 rdf:type schema:DefinedTerm
125 N9a891bade90d4f5b88e58620ed8fdc63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Immunoenzyme Techniques
127 rdf:type schema:DefinedTerm
128 N9e0186b106d74e64a28610a316f98e71 rdf:first sg:person.01257654035.07
129 rdf:rest Nd4e88792d129464c87c3e7d80e89f900
130 Naa193b640f684e87b740cf4421cfb665 schema:volumeNumber 19
131 rdf:type schema:PublicationVolume
132 Nab4235a8da9645ff8b3db6665d3a3843 rdf:first sg:person.01143425435.05
133 rdf:rest N5c877071ffdb43ed9cffd5e248410aee
134 Nacda0c9a7ab049e7b0824432af0e748d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Adult
136 rdf:type schema:DefinedTerm
137 Nbf184470584f4f4d96e53dc8ccc313a2 rdf:first sg:person.0761063635.15
138 rdf:rest N3ce1856107c949fdb62ff74ab4ef2b7e
139 Nca855db9de9340dfb9251870abb07f20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Gene Expression Profiling
141 rdf:type schema:DefinedTerm
142 Ncfb881223b4b4d40ab2e0290690cc3c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Ki-67 Antigen
144 rdf:type schema:DefinedTerm
145 Nd263b6d820f0419d9b003f9c8c149671 schema:name doi
146 schema:value 10.1245/s10434-012-2561-6
147 rdf:type schema:PropertyValue
148 Nd366e5667d514453b590824ab24a3df5 rdf:first sg:person.01167175573.05
149 rdf:rest N53df185f1cb74f94828c009877eb02b3
150 Nd3d07e0bedff4f0f8599d7cb9487c8fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Microarray Analysis
152 rdf:type schema:DefinedTerm
153 Nd44e9d360a0e478cb374ec7ae8aa40c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Prognosis
155 rdf:type schema:DefinedTerm
156 Nd4e88792d129464c87c3e7d80e89f900 rdf:first sg:person.01325767235.17
157 rdf:rest Nf3f5d1c3158540af8e9dc6afdcfaba31
158 Ndc999ccbf4034a179ac1d3fbaa3a09c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Biomarkers, Tumor
160 rdf:type schema:DefinedTerm
161 Ne5252d6fd43046109d7889e2be13a9e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Neoplasm Grading
163 rdf:type schema:DefinedTerm
164 Nea1d09470a1540c4bbe818daca6c16e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Receptors, Progesterone
166 rdf:type schema:DefinedTerm
167 Necf98a41d60944a08a3c7e815df78bcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Breast Neoplasms
169 rdf:type schema:DefinedTerm
170 Nf3f5d1c3158540af8e9dc6afdcfaba31 rdf:first sg:person.01265017241.84
171 rdf:rest Nd366e5667d514453b590824ab24a3df5
172 Nf76d3dd9524549efa56116cb96f1bca8 schema:issueNumber 10
173 rdf:type schema:PublicationIssue
174 Nfea722cb660b45af9e87f99100631929 schema:name nlm_unique_id
175 schema:value 9420840
176 rdf:type schema:PropertyValue
177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
178 schema:name Medical and Health Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
181 schema:name Oncology and Carcinogenesis
182 rdf:type schema:DefinedTerm
183 sg:journal.1105545 schema:issn 1068-9265
184 1534-4681
185 schema:name Annals of Surgical Oncology
186 rdf:type schema:Periodical
187 sg:person.01033751672.61 schema:affiliation https://www.grid.ac/institutes/grid.477026.0
188 schema:familyName Cusumano
189 schema:givenName Pino G.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033751672.61
191 rdf:type schema:Person
192 sg:person.01075312235.67 schema:affiliation https://www.grid.ac/institutes/grid.416405.2
193 schema:familyName Deck
194 schema:givenName Kenneth
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075312235.67
196 rdf:type schema:Person
197 sg:person.01143425435.05 schema:affiliation N6c824fde3c7f473da192bcda65f23cc7
198 schema:familyName Kerlin
199 schema:givenName Deborah
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143425435.05
201 rdf:type schema:Person
202 sg:person.01167175573.05 schema:affiliation N7bb04d098140444da523a00367682d24
203 schema:familyName de Snoo
204 schema:givenName Femke A.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167175573.05
206 rdf:type schema:Person
207 sg:person.01211540635.05 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
208 schema:familyName Garcia
209 schema:givenName Agustin A.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211540635.05
211 rdf:type schema:Person
212 sg:person.01257654035.07 schema:affiliation https://www.grid.ac/institutes/grid.415655.6
213 schema:familyName Barone
214 schema:givenName Julie L.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257654035.07
216 rdf:type schema:Person
217 sg:person.01265017241.84 schema:affiliation https://www.grid.ac/institutes/grid.240372.0
218 schema:familyName Yao
219 schema:givenName Katharine
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265017241.84
221 rdf:type schema:Person
222 sg:person.01325767235.17 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
223 schema:familyName Rivera
224 schema:givenName Edgardo
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325767235.17
226 rdf:type schema:Person
227 sg:person.0716611535.12 schema:affiliation N01c9b434d3bc4e8aba26ee4ae72607f7
228 schema:familyName van den Akker
229 schema:givenName Jeroen
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716611535.12
231 rdf:type schema:Person
232 sg:person.0723757005.25 schema:affiliation https://www.grid.ac/institutes/grid.419450.d
233 schema:familyName Generali
234 schema:givenName Daniele
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723757005.25
236 rdf:type schema:Person
237 sg:person.0761063635.15 schema:affiliation https://www.grid.ac/institutes/grid.415304.7
238 schema:familyName Nguyen
239 schema:givenName Bichlien
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761063635.15
241 rdf:type schema:Person
242 sg:person.0764724735.42 schema:affiliation N57e445c9669a4741bdc5a1d5cbbc137c
243 schema:familyName Stork-Sloots
244 schema:givenName Lisette
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764724735.42
246 rdf:type schema:Person
247 sg:pub.10.1007/s10549-011-1683-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032799097
248 https://doi.org/10.1007/s10549-011-1683-z
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
251 https://doi.org/10.1038/35021093
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1471-2164-7-278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052494272
254 https://doi.org/10.1186/1471-2164-7-278
255 rdf:type schema:CreativeWork
256 sg:pub.10.2325/jbcs.976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028729188
257 https://doi.org/10.2325/jbcs.976
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1056/nejmra0801289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039409706
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/annonc/mdp322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042592360
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/annonc/mdr304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009166329
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/jnci/djp082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020655992
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1158/0008-5472.sabcs11-p1-07-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063220022
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1158/0008-5472.sabcs11-p5-11-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063220838
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1158/1078-0432.ccr-09-0449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002055562
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1158/1078-0432.ccr-10-1282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021940935
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1309/4d1a04ncdk96wfy7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022759445
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1371/journal.pmed.1000279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015285825
278 rdf:type schema:CreativeWork
279 https://doi.org/10.3892/ijmm_00000532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071510060
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.240372.0 schema:alternateName NorthShore University HealthSystem
282 schema:name Department of Surgical Oncology, North Shore University Health System, Chicago, IL, USA
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.415304.7 schema:alternateName Long Beach Memorial Medical Center
285 schema:name Department of Medicine, Todd Cancer Institute, Long Beach Memorial Medical Center, Long Beach, CA, USA
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.415655.6 schema:alternateName Sharp Memorial Hospital
288 schema:name Department of Surgery, Comprehensive Breast Care of San Diego and Sharp Memorial Hospital, San Diego, CA, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.416405.2 schema:alternateName Saddleback Memorial Medical Center
291 schema:name Department of Surgical Oncology, Saddleback Memorial Medical Center, Laguna Hills, CA, USA
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.419450.d schema:alternateName Istituti Ospitalieri di Cremona
294 schema:name Department of Medical Oncology, U.O.M. Patologia Mammaria-Laboratorio di Oncologia Molecolare Senologica, A.O. Istituti Ospitalieri di Cremona, Cremona, Italy
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
297 schema:name Division of Oncology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.477026.0 schema:alternateName Clinic of Hope
300 schema:name Department of Surgical Oncology, CHC, Liege, Belgium
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
303 schema:name Department of Medical Oncology, The Methodist Hospital/Weill Cornell University, Houston, TX, USA
304 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...