Gene Expression Profile Prospectively Predicts Peritoneal Relapse After Curative Surgery of Gastric Cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04

AUTHORS

Atsushi Takeno, Ichiro Takemasa, Shigeto Seno, Makoto Yamasaki, Masaaki Motoori, Hiroshi Miyata, Kiyokazu Nakajima, Shuji Takiguchi, Yoshiyuki Fujiwara, Toshiro Nishida, Toshitsugu Okayama, Kenichi Matsubara, Yoichi Takenaka, Hideo Matsuda, Morito Monden, Masaki Mori, Yuichiro Doki

ABSTRACT

BACKGROUND: Peritoneal relapse is the most common pattern of tumor progression in advanced gastric cancer. Clinicopathological findings are sometimes inadequate for predicting peritoneal relapse. The aim of this study was to identify patients at high risk of peritoneal relapse in a prospective study based on molecular prediction. METHODS: RNA samples from 141 primary gastric cancer tissues after curative surgery were profiled using oligonucleotide microarrays covering 30,000 human probes. Firstly, we constructed a molecular prediction system and validated its robustness and prognostic validity by 500 times multiple validation by repeated random sampling in a retrospective set of 56 (38 relapse-free and 18 peritoneal-relapse) patients. Secondly, we applied this prediction to 85 patients of the prospective set to assess predictive accuracy and prognostic validity. RESULTS: In the retrospective phase, repeated random validation yielded approximately 68% predictive accuracy and a 22-gene expression profile associated with peritoneal relapse was identified. The prediction system identified patients with poor prognosis. In the prospective phase, the molecular prediction yielded 76.9% overall accuracy. Kaplan-Meier analysis of peritoneal-relapse-free survival showed a significant difference between the "good signature group" and "poor signature group" (log-rank p = 0.0017). Multivariate analysis by Cox regression hazards model identified the molecular prediction as the only independent prognostic factor for peritoneal relapse. CONCLUSIONS: Gene expression profile inherent to primary gastric cancer tissues can be useful in prospective prediction of peritoneal relapse after curative surgery, potentially allowing individualized postoperative management to improve the prognosis of patients with advanced gastric cancer. More... »

PAGES

1033-1042

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-009-0854-1

DOI

http://dx.doi.org/10.1245/s10434-009-0854-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039721548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20012501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peritoneal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Validation Studies as Topic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeno", 
        "givenName": "Atsushi", 
        "id": "sg:person.01004021270.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004021270.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takemasa", 
        "givenName": "Ichiro", 
        "id": "sg:person.01334052553.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334052553.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seno", 
        "givenName": "Shigeto", 
        "id": "sg:person.01230511574.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230511574.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamasaki", 
        "givenName": "Makoto", 
        "id": "sg:person.010554446472.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554446472.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Medical Center for Cancer and Cardiovascular Diseases", 
          "id": "https://www.grid.ac/institutes/grid.416963.f", 
          "name": [
            "Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motoori", 
        "givenName": "Masaaki", 
        "id": "sg:person.01027010035.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027010035.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyata", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01263545505.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263545505.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Kiyokazu", 
        "id": "sg:person.016143515212.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143515212.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takiguchi", 
        "givenName": "Shuji", 
        "id": "sg:person.01216533544.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216533544.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujiwara", 
        "givenName": "Yoshiyuki", 
        "id": "sg:person.01132135455.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132135455.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishida", 
        "givenName": "Toshiro", 
        "id": "sg:person.015704426302.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704426302.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "BioInformation Technology & Science (BITS) Co., Ltd, Suntou, Shizuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okayama", 
        "givenName": "Toshitsugu", 
        "id": "sg:person.01343734603.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343734603.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DNA Chip Research (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.452377.0", 
          "name": [
            "DNA Chip Research Inc., Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsubara", 
        "givenName": "Kenichi", 
        "id": "sg:person.07540607175.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540607175.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takenaka", 
        "givenName": "Yoichi", 
        "id": "sg:person.016517602211.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517602211.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuda", 
        "givenName": "Hideo", 
        "id": "sg:person.014655326171.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014655326171.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monden", 
        "givenName": "Morito", 
        "id": "sg:person.01352316603.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352316603.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Masaki", 
        "id": "sg:person.010742365632.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742365632.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doki", 
        "givenName": "Yuichiro", 
        "id": "sg:person.0675025703.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675025703.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2007.14.3222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000088993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2007.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002415399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2168.2000.01360.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002757899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003801065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2143(03)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005102668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2143(03)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005102668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-5085(00)70255-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007434993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-5085(00)70255-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007434993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2003.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009214668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19980401)82:7<1233::aid-cncr4>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012097615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382080a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013786629", 
          "https://doi.org/10.1038/382080a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17866-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014542455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/hp.2000.6546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014940039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015665880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.272.5.2936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017472168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djk018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017956350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.11.1106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018456662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.2930590405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018577460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200204000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018967701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200204000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018967701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.20808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021195827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6604682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022621746", 
          "https://doi.org/10.1038/sj.bjc.6604682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2004.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023992061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.20277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025960375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.20277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025960375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(94)01368-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031107485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19980601)82:11<2112::aid-cncr5>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031403778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032571151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033378396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199011000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035633539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199011000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035633539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038400003", 
          "https://doi.org/10.1038/ng1060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038400003", 
          "https://doi.org/10.1038/ng1060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa021967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038600096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.05.0229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039902598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2006.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043610549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6600580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044527535", 
          "https://doi.org/10.1038/sj.bjc.6600580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6600580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044527535", 
          "https://doi.org/10.1038/sj.bjc.6600580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81311-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046230290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2008.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046695589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.00.2253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049512247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.00.2253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049512247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa072252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052623204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199809000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060134858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199809000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060134858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199809000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060134858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502753479248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082528297", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "BACKGROUND: Peritoneal relapse is the most common pattern of tumor progression in advanced gastric cancer. Clinicopathological findings are sometimes inadequate for predicting peritoneal relapse. The aim of this study was to identify patients at high risk of peritoneal relapse in a prospective study based on molecular prediction.\nMETHODS: RNA samples from 141 primary gastric cancer tissues after curative surgery were profiled using oligonucleotide microarrays covering 30,000 human probes. Firstly, we constructed a molecular prediction system and validated its robustness and prognostic validity by 500 times multiple validation by repeated random sampling in a retrospective set of 56 (38 relapse-free and 18 peritoneal-relapse) patients. Secondly, we applied this prediction to 85 patients of the prospective set to assess predictive accuracy and prognostic validity.\nRESULTS: In the retrospective phase, repeated random validation yielded approximately 68% predictive accuracy and a 22-gene expression profile associated with peritoneal relapse was identified. The prediction system identified patients with poor prognosis. In the prospective phase, the molecular prediction yielded 76.9% overall accuracy. Kaplan-Meier analysis of peritoneal-relapse-free survival showed a significant difference between the \"good signature group\" and \"poor signature group\" (log-rank p = 0.0017). Multivariate analysis by Cox regression hazards model identified the molecular prediction as the only independent prognostic factor for peritoneal relapse.\nCONCLUSIONS: Gene expression profile inherent to primary gastric cancer tissues can be useful in prospective prediction of peritoneal relapse after curative surgery, potentially allowing individualized postoperative management to improve the prognosis of patients with advanced gastric cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1245/s10434-009-0854-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Gene Expression Profile Prospectively Predicts Peritoneal Relapse After Curative Surgery of Gastric Cancer", 
    "pagination": "1033-1042", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd3737467a94ff2c0bfafe33add50ec41679398f4c37b35778e41aa636d6e152"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20012501"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9420840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-009-0854-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039721548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-009-0854-1", 
      "https://app.dimensions.ai/details/publication/pub.1039721548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99818_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1245/s10434-009-0854-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-009-0854-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-009-0854-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-009-0854-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-009-0854-1'


 

This table displays all metadata directly associated to this object as RDF triples.

390 TRIPLES      21 PREDICATES      88 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-009-0854-1 schema:about N270c11d474ba473eb89a6d55cc97ff22
2 N5bdac8b599124751a67ef65f6d61d07b
3 N61da2a9041644d669a41bab5fca971f7
4 N629b568f71da45179b239e2c156f17db
5 N6985f07ee2de4024bacbe0106624ce24
6 N6e2154312ce2418d879a4b9a33f9934e
7 N6ecb372bd08d4fe8a80b8a28d070f908
8 N77595267f8bf4b48a1826336d5131bf0
9 N7ce77000252740f7a69f9c2db4d293e6
10 N92cc0ca4c07b40c899bf37534bd26374
11 N940f0b4fe5074e7f89eaaea3cadb2cb6
12 N9a6eca03ed7e46ae94da50b4a14c9032
13 Na20a2f4b0ad64f6ab2f28c48d808326d
14 Nae75bdffbf1344f7af7df7612b5ec71f
15 Nba1ddf6c92c241c3b0a5a9e98634f7e3
16 Nbb4a667a833d4bd3be332ff12f779540
17 Nda8d7959b7c84327a82eb9d41821a503
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author Nf991a81678554ad980450b30b45828fb
21 schema:citation sg:pub.10.1038/35021093
22 sg:pub.10.1038/382080a0
23 sg:pub.10.1038/415530a
24 sg:pub.10.1038/nature04296
25 sg:pub.10.1038/ng1060
26 sg:pub.10.1038/sj.bjc.6600580
27 sg:pub.10.1038/sj.bjc.6604682
28 https://app.dimensions.ai/details/publication/pub.1082528297
29 https://doi.org/10.1002/(sici)1097-0142(19980401)82:7<1233::aid-cncr4>3.0.co;2-g
30 https://doi.org/10.1002/(sici)1097-0142(19980601)82:11<2112::aid-cncr5>3.0.co;2-x
31 https://doi.org/10.1002/ijc.20808
32 https://doi.org/10.1002/jso.20277
33 https://doi.org/10.1002/jso.2930590405
34 https://doi.org/10.1016/0014-5793(94)01368-b
35 https://doi.org/10.1016/j.bbrc.2003.12.025
36 https://doi.org/10.1016/j.ejca.2006.04.007
37 https://doi.org/10.1016/j.ejca.2008.12.019
38 https://doi.org/10.1016/j.humpath.2007.04.024
39 https://doi.org/10.1016/j.jss.2004.10.003
40 https://doi.org/10.1016/s0016-5085(00)70255-1
41 https://doi.org/10.1016/s0022-2143(03)00068-4
42 https://doi.org/10.1016/s0092-8674(00)81311-2
43 https://doi.org/10.1016/s0140-6736(05)17866-0
44 https://doi.org/10.1046/j.1365-2168.2000.01360.x
45 https://doi.org/10.1053/hp.2000.6546
46 https://doi.org/10.1056/nejmoa021967
47 https://doi.org/10.1056/nejmoa072252
48 https://doi.org/10.1074/jbc.272.5.2936
49 https://doi.org/10.1093/bioinformatics/bth447
50 https://doi.org/10.1093/jnci/djk018
51 https://doi.org/10.1097/00000658-199011000-00005
52 https://doi.org/10.1097/00000658-199809000-00007
53 https://doi.org/10.1097/00000658-200204000-00007
54 https://doi.org/10.1101/gr.9.11.1106
55 https://doi.org/10.1126/science.286.5439.531
56 https://doi.org/10.1158/1078-0432.ccr-04-0243
57 https://doi.org/10.1198/016214502753479248
58 https://doi.org/10.1200/jco.2004.00.2253
59 https://doi.org/10.1200/jco.2005.05.0229
60 https://doi.org/10.1200/jco.2007.14.3222
61 https://doi.org/10.1200/jco.2007.15.1068
62 https://doi.org/10.1371/journal.pone.0001050
63 schema:datePublished 2010-04
64 schema:datePublishedReg 2010-04-01
65 schema:description BACKGROUND: Peritoneal relapse is the most common pattern of tumor progression in advanced gastric cancer. Clinicopathological findings are sometimes inadequate for predicting peritoneal relapse. The aim of this study was to identify patients at high risk of peritoneal relapse in a prospective study based on molecular prediction. METHODS: RNA samples from 141 primary gastric cancer tissues after curative surgery were profiled using oligonucleotide microarrays covering 30,000 human probes. Firstly, we constructed a molecular prediction system and validated its robustness and prognostic validity by 500 times multiple validation by repeated random sampling in a retrospective set of 56 (38 relapse-free and 18 peritoneal-relapse) patients. Secondly, we applied this prediction to 85 patients of the prospective set to assess predictive accuracy and prognostic validity. RESULTS: In the retrospective phase, repeated random validation yielded approximately 68% predictive accuracy and a 22-gene expression profile associated with peritoneal relapse was identified. The prediction system identified patients with poor prognosis. In the prospective phase, the molecular prediction yielded 76.9% overall accuracy. Kaplan-Meier analysis of peritoneal-relapse-free survival showed a significant difference between the "good signature group" and "poor signature group" (log-rank p = 0.0017). Multivariate analysis by Cox regression hazards model identified the molecular prediction as the only independent prognostic factor for peritoneal relapse. CONCLUSIONS: Gene expression profile inherent to primary gastric cancer tissues can be useful in prospective prediction of peritoneal relapse after curative surgery, potentially allowing individualized postoperative management to improve the prognosis of patients with advanced gastric cancer.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree false
69 schema:isPartOf N56270039fbd447cf99a42f0d7996dfdb
70 N60d8223981d04e89a626e7deb9d43e36
71 sg:journal.1105545
72 schema:name Gene Expression Profile Prospectively Predicts Peritoneal Relapse After Curative Surgery of Gastric Cancer
73 schema:pagination 1033-1042
74 schema:productId N55b4642f8d4c4107a559babaf32bcff6
75 N593fde21c0ee443996129cb1ae395490
76 N66408ac855ce40cd9b416ef6d8c7c3bc
77 N9914a0210c5b4947946ed2adc4d4b4a1
78 Nd3d46a085c0a4a4c8fa74d366ac69089
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039721548
80 https://doi.org/10.1245/s10434-009-0854-1
81 schema:sdDatePublished 2019-04-11T09:35
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Ne5a337564b8541b5995cf2f104444e8c
84 schema:url http://link.springer.com/10.1245/s10434-009-0854-1
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N108dfbdf01c64c6285e9cf58be6a8ad3 rdf:first sg:person.01352316603.94
89 rdf:rest Nd2fa4ccc14e546f6a8d679a6bcdaa441
90 N215e30b1b9464963bb03e436d3cb4682 rdf:first sg:person.010554446472.80
91 rdf:rest N58578b33348041869ca9d914ad175951
92 N2313c711de6740faa477761b71e7f92a rdf:first sg:person.01263545505.74
93 rdf:rest N9001af2d27674101a671da4b8408562a
94 N270c11d474ba473eb89a6d55cc97ff22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Biomarkers, Tumor
96 rdf:type schema:DefinedTerm
97 N50bb9cf0c169473a8e1f0b37a1ea4cb3 rdf:first sg:person.014655326171.86
98 rdf:rest N108dfbdf01c64c6285e9cf58be6a8ad3
99 N55b4642f8d4c4107a559babaf32bcff6 schema:name nlm_unique_id
100 schema:value 9420840
101 rdf:type schema:PropertyValue
102 N56270039fbd447cf99a42f0d7996dfdb schema:issueNumber 4
103 rdf:type schema:PublicationIssue
104 N58578b33348041869ca9d914ad175951 rdf:first sg:person.01027010035.12
105 rdf:rest N2313c711de6740faa477761b71e7f92a
106 N593fde21c0ee443996129cb1ae395490 schema:name readcube_id
107 schema:value bd3737467a94ff2c0bfafe33add50ec41679398f4c37b35778e41aa636d6e152
108 rdf:type schema:PropertyValue
109 N5bdac8b599124751a67ef65f6d61d07b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Female
111 rdf:type schema:DefinedTerm
112 N60d8223981d04e89a626e7deb9d43e36 schema:volumeNumber 17
113 rdf:type schema:PublicationVolume
114 N61da2a9041644d669a41bab5fca971f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Prospective Studies
116 rdf:type schema:DefinedTerm
117 N629b568f71da45179b239e2c156f17db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gene Expression Profiling
119 rdf:type schema:DefinedTerm
120 N63a1d1442b0e4bcf88675069d968579e rdf:first sg:person.01132135455.07
121 rdf:rest Nbeb72b16fc3c4b7499727efe6cf17478
122 N66408ac855ce40cd9b416ef6d8c7c3bc schema:name dimensions_id
123 schema:value pub.1039721548
124 rdf:type schema:PropertyValue
125 N6985f07ee2de4024bacbe0106624ce24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Follow-Up Studies
127 rdf:type schema:DefinedTerm
128 N6e2154312ce2418d879a4b9a33f9934e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Retrospective Studies
130 rdf:type schema:DefinedTerm
131 N6e570d9e974e48eabefe99e453e02754 rdf:first sg:person.016517602211.84
132 rdf:rest N50bb9cf0c169473a8e1f0b37a1ea4cb3
133 N6ecb372bd08d4fe8a80b8a28d070f908 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Stomach Neoplasms
135 rdf:type schema:DefinedTerm
136 N6fbe449ee1fd4fefbd0e185d334ce2cc rdf:first sg:person.01230511574.07
137 rdf:rest N215e30b1b9464963bb03e436d3cb4682
138 N77595267f8bf4b48a1826336d5131bf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Survival Rate
140 rdf:type schema:DefinedTerm
141 N7ce77000252740f7a69f9c2db4d293e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Aged
143 rdf:type schema:DefinedTerm
144 N7eec3a75db6b489598fadfd517ff5190 schema:name BioInformation Technology & Science (BITS) Co., Ltd, Suntou, Shizuoka, Japan
145 rdf:type schema:Organization
146 N9001af2d27674101a671da4b8408562a rdf:first sg:person.016143515212.29
147 rdf:rest N9fdbdea8371a48809369e8e1d2246ad3
148 N92cc0ca4c07b40c899bf37534bd26374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Oligonucleotide Array Sequence Analysis
150 rdf:type schema:DefinedTerm
151 N940f0b4fe5074e7f89eaaea3cadb2cb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Male
153 rdf:type schema:DefinedTerm
154 N9914a0210c5b4947946ed2adc4d4b4a1 schema:name pubmed_id
155 schema:value 20012501
156 rdf:type schema:PropertyValue
157 N9a6eca03ed7e46ae94da50b4a14c9032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Neoplasm Recurrence, Local
159 rdf:type schema:DefinedTerm
160 N9fdbdea8371a48809369e8e1d2246ad3 rdf:first sg:person.01216533544.96
161 rdf:rest N63a1d1442b0e4bcf88675069d968579e
162 Na20a2f4b0ad64f6ab2f28c48d808326d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Peritoneal Neoplasms
164 rdf:type schema:DefinedTerm
165 Nae75bdffbf1344f7af7df7612b5ec71f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 Nb3567caeb677444a9344efb649a5b890 rdf:first sg:person.01343734603.33
169 rdf:rest Ned799a67c8964c84a8a28bf7dd9227d7
170 Nba1ddf6c92c241c3b0a5a9e98634f7e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Treatment Outcome
172 rdf:type schema:DefinedTerm
173 Nbb4a667a833d4bd3be332ff12f779540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Lymphatic Metastasis
175 rdf:type schema:DefinedTerm
176 Nbeb72b16fc3c4b7499727efe6cf17478 rdf:first sg:person.015704426302.21
177 rdf:rest Nb3567caeb677444a9344efb649a5b890
178 Nc1dbf7cc14db408093413f8ea1195cb1 rdf:first sg:person.0675025703.30
179 rdf:rest rdf:nil
180 Nd2fa4ccc14e546f6a8d679a6bcdaa441 rdf:first sg:person.010742365632.31
181 rdf:rest Nc1dbf7cc14db408093413f8ea1195cb1
182 Nd3d46a085c0a4a4c8fa74d366ac69089 schema:name doi
183 schema:value 10.1245/s10434-009-0854-1
184 rdf:type schema:PropertyValue
185 Nda8d7959b7c84327a82eb9d41821a503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Validation Studies as Topic
187 rdf:type schema:DefinedTerm
188 Ne5a337564b8541b5995cf2f104444e8c schema:name Springer Nature - SN SciGraph project
189 rdf:type schema:Organization
190 Nea67eaa8100a4d1e995d0a0a66a0401c rdf:first sg:person.01334052553.68
191 rdf:rest N6fbe449ee1fd4fefbd0e185d334ce2cc
192 Ned799a67c8964c84a8a28bf7dd9227d7 rdf:first sg:person.07540607175.11
193 rdf:rest N6e570d9e974e48eabefe99e453e02754
194 Nf991a81678554ad980450b30b45828fb rdf:first sg:person.01004021270.54
195 rdf:rest Nea67eaa8100a4d1e995d0a0a66a0401c
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
200 schema:name Oncology and Carcinogenesis
201 rdf:type schema:DefinedTerm
202 sg:journal.1105545 schema:issn 1068-9265
203 1534-4681
204 schema:name Annals of Surgical Oncology
205 rdf:type schema:Periodical
206 sg:person.01004021270.54 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
207 schema:familyName Takeno
208 schema:givenName Atsushi
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004021270.54
210 rdf:type schema:Person
211 sg:person.01027010035.12 schema:affiliation https://www.grid.ac/institutes/grid.416963.f
212 schema:familyName Motoori
213 schema:givenName Masaaki
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027010035.12
215 rdf:type schema:Person
216 sg:person.010554446472.80 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
217 schema:familyName Yamasaki
218 schema:givenName Makoto
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554446472.80
220 rdf:type schema:Person
221 sg:person.010742365632.31 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
222 schema:familyName Mori
223 schema:givenName Masaki
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742365632.31
225 rdf:type schema:Person
226 sg:person.01132135455.07 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
227 schema:familyName Fujiwara
228 schema:givenName Yoshiyuki
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132135455.07
230 rdf:type schema:Person
231 sg:person.01216533544.96 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
232 schema:familyName Takiguchi
233 schema:givenName Shuji
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216533544.96
235 rdf:type schema:Person
236 sg:person.01230511574.07 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
237 schema:familyName Seno
238 schema:givenName Shigeto
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230511574.07
240 rdf:type schema:Person
241 sg:person.01263545505.74 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
242 schema:familyName Miyata
243 schema:givenName Hiroshi
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263545505.74
245 rdf:type schema:Person
246 sg:person.01334052553.68 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
247 schema:familyName Takemasa
248 schema:givenName Ichiro
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334052553.68
250 rdf:type schema:Person
251 sg:person.01343734603.33 schema:affiliation N7eec3a75db6b489598fadfd517ff5190
252 schema:familyName Okayama
253 schema:givenName Toshitsugu
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343734603.33
255 rdf:type schema:Person
256 sg:person.01352316603.94 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
257 schema:familyName Monden
258 schema:givenName Morito
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352316603.94
260 rdf:type schema:Person
261 sg:person.014655326171.86 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
262 schema:familyName Matsuda
263 schema:givenName Hideo
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014655326171.86
265 rdf:type schema:Person
266 sg:person.015704426302.21 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
267 schema:familyName Nishida
268 schema:givenName Toshiro
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704426302.21
270 rdf:type schema:Person
271 sg:person.016143515212.29 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
272 schema:familyName Nakajima
273 schema:givenName Kiyokazu
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143515212.29
275 rdf:type schema:Person
276 sg:person.016517602211.84 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
277 schema:familyName Takenaka
278 schema:givenName Yoichi
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517602211.84
280 rdf:type schema:Person
281 sg:person.0675025703.30 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
282 schema:familyName Doki
283 schema:givenName Yuichiro
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675025703.30
285 rdf:type schema:Person
286 sg:person.07540607175.11 schema:affiliation https://www.grid.ac/institutes/grid.452377.0
287 schema:familyName Matsubara
288 schema:givenName Kenichi
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540607175.11
290 rdf:type schema:Person
291 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
292 https://doi.org/10.1038/35021093
293 rdf:type schema:CreativeWork
294 sg:pub.10.1038/382080a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013786629
295 https://doi.org/10.1038/382080a0
296 rdf:type schema:CreativeWork
297 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
298 https://doi.org/10.1038/415530a
299 rdf:type schema:CreativeWork
300 sg:pub.10.1038/nature04296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028145633
301 https://doi.org/10.1038/nature04296
302 rdf:type schema:CreativeWork
303 sg:pub.10.1038/ng1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038400003
304 https://doi.org/10.1038/ng1060
305 rdf:type schema:CreativeWork
306 sg:pub.10.1038/sj.bjc.6600580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044527535
307 https://doi.org/10.1038/sj.bjc.6600580
308 rdf:type schema:CreativeWork
309 sg:pub.10.1038/sj.bjc.6604682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022621746
310 https://doi.org/10.1038/sj.bjc.6604682
311 rdf:type schema:CreativeWork
312 https://app.dimensions.ai/details/publication/pub.1082528297 schema:CreativeWork
313 https://doi.org/10.1002/(sici)1097-0142(19980401)82:7<1233::aid-cncr4>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1012097615
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1002/(sici)1097-0142(19980601)82:11<2112::aid-cncr5>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031403778
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1002/ijc.20808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021195827
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1002/jso.20277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025960375
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1002/jso.2930590405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018577460
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1016/0014-5793(94)01368-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1031107485
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1016/j.bbrc.2003.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009214668
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1016/j.ejca.2006.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043610549
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1016/j.ejca.2008.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046695589
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1016/j.humpath.2007.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002415399
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1016/j.jss.2004.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023992061
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1016/s0016-5085(00)70255-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007434993
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1016/s0022-2143(03)00068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005102668
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1016/s0092-8674(00)81311-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046230290
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1016/s0140-6736(05)17866-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014542455
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1046/j.1365-2168.2000.01360.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002757899
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1053/hp.2000.6546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014940039
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1056/nejmoa072252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052623204
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1074/jbc.272.5.2936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017472168
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1093/bioinformatics/bth447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032571151
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1093/jnci/djk018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017956350
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1097/00000658-199011000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035633539
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1097/00000658-199809000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060134858
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1097/00000658-200204000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018967701
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1101/gr.9.11.1106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018456662
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1158/1078-0432.ccr-04-0243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003801065
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1198/016214502753479248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197973
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1200/jco.2004.00.2253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049512247
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1200/jco.2005.05.0229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039902598
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1200/jco.2007.14.3222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000088993
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1200/jco.2007.15.1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015665880
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1371/journal.pone.0001050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033378396
380 rdf:type schema:CreativeWork
381 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
382 schema:name Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, Japan
383 Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
384 rdf:type schema:Organization
385 https://www.grid.ac/institutes/grid.416963.f schema:alternateName Osaka Medical Center for Cancer and Cardiovascular Diseases
386 schema:name Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari, Osaka, Japan
387 rdf:type schema:Organization
388 https://www.grid.ac/institutes/grid.452377.0 schema:alternateName DNA Chip Research (Japan)
389 schema:name DNA Chip Research Inc., Yokohama, Kanagawa, Japan
390 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...