Pretreatment Gene Expression Profiles Can Be Used to Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Cuong Duong, Danielle M. Greenawalt, Adam Kowalczyk, Marianne L. Ciavarella, Garvesh Raskutti, William K. Murray, Wayne A. Phillips, Robert J. S. Thomas

ABSTRACT

BACKGROUND: The use of neoadjuvant therapy, in particular chemoradiotherapy (CRT), in the treatment of esophageal cancer (EC) remains controversial. The ability to predict treatment response in an individual EC patient would greatly aid therapeutic planning. Gene expression profiles of EC were measured and relationship to therapeutic response assessed. METHODS: Tumor biopsy samples taken from 46 EC patients before neoadjuvant CRT were analyzed on 10.5K cDNA microarrays. Response to treatment was assessed and correlated to gene expression patterns by using a support vector machine learning algorithm. RESULTS: Complete clinical response at conclusion of CRT was achieved in 6 of 21 squamous cell carcinoma (SCC) and 11 of 25 adenocarcinoma (AC) patients. CRT response was an independent prognostic factor for survival (P < .001). A range of support vector machine models incorporating 10 to 1000 genes produced a predictive performance of tumor response to CRT peaking at 87% in SCC, but a distinct positive prediction profile was unobtainable for AC. A 32-gene classifier was produced, and by means of this classifier, 10 of 21 SCC patients could be accurately identified as having disease with an incomplete response to therapy, and thus unlikely to benefit from neoadjuvant CRT. CONCLUSIONS: Our study identifies a 32-gene classifier that can be used to predict response to neoadjuvant CRT in SCC. However, because of the molecular diversity between the two histological subtypes of EC, when considering the AC and SCC samples as a single cohort, a predictive profile could not be resolved, and a negative predictive profile was observed for AC. More... »

PAGES

3602-3609

Identifiers

URI

http://scigraph.springernature.com/pub.10.1245/s10434-007-9550-1

DOI

http://dx.doi.org/10.1245/s10434-007-9550-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050524686

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17896157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Squamous Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Combined Modality Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophageal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophagectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoenzyme Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Division of Surgical Oncology, Peter MacCallum Cancer Centre, St. Andrew\u2019s Place, 3002, East Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duong", 
        "givenName": "Cuong", 
        "id": "sg:person.01133501561.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501561.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Division of Surgical Oncology, Peter MacCallum Cancer Centre, St. Andrew\u2019s Place, 3002, East Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greenawalt", 
        "givenName": "Danielle M.", 
        "id": "sg:person.01143533316.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143533316.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Life Sciences, National Information and Communications Technology Australia and Department Electrical & Electronic Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kowalczyk", 
        "givenName": "Adam", 
        "id": "sg:person.01273777252.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273777252.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Division of Surgical Oncology, Peter MacCallum Cancer Centre, St. Andrew\u2019s Place, 3002, East Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciavarella", 
        "givenName": "Marianne L.", 
        "id": "sg:person.01047300510.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047300510.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Life Sciences, National Information and Communications Technology Australia and Department Electrical & Electronic Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raskutti", 
        "givenName": "Garvesh", 
        "id": "sg:person.01051274441.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051274441.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Department of Pathology, Peter MacCallum Cancer Centre, St. Andrew\u2019s Place, 3002, East Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murray", 
        "givenName": "William K.", 
        "id": "sg:person.01161255563.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161255563.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Division of Surgical Oncology, Peter MacCallum Cancer Centre, St. Andrew\u2019s Place, 3002, East Melbourne, Victoria, Australia", 
            "University of Melbourne Department of Surgery, St. Vincent\u2019s Hospital, 3065, Fitzroy, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phillips", 
        "givenName": "Wayne A.", 
        "id": "sg:person.0705640631.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705640631.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter MacCallum Cancer Centre", 
          "id": "https://www.grid.ac/institutes/grid.1055.1", 
          "name": [
            "Division of Surgical Oncology, Peter MacCallum Cancer Centre, St. Andrew\u2019s Place, 3002, East Melbourne, Victoria, Australia", 
            "University of Melbourne Department of Surgery, St. Vincent\u2019s Hospital, 3065, Fitzroy, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Robert J. S.", 
        "id": "sg:person.07721206642.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721206642.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-005-0040-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005438519", 
          "https://doi.org/10.1007/s00259-005-0040-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-0040-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005438519", 
          "https://doi.org/10.1007/s00259-005-0040-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-04-3617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007413471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.5.1663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007853142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1445-2197.1996.tb01167.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013604743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.122.4.1302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015126111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.122.4.1302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015126111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.00.406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017005264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(03)14023-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017992521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199903183401101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.397002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020023598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)65346-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020924558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/95.1.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023174537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2004.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025101705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2168.2001.01670.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027193527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027815464", 
          "https://doi.org/10.1038/4455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027815464", 
          "https://doi.org/10.1038/4455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.10.906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029326163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.8810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033253268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.21346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041394111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.21346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041394111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19970915)80:6<1011::aid-cncr2>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042323260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-0042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043627582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/028418602753669472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044149871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.3688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047148845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/canjclin.55.2.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048020321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0748-7983(97)92364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048277310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(01)00353-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053686860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.22501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053707374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.28.6.1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071516036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075287149", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081738816", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1993.11.6.1118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082833658"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: The use of neoadjuvant therapy, in particular chemoradiotherapy (CRT), in the treatment of esophageal cancer (EC) remains controversial. The ability to predict treatment response in an individual EC patient would greatly aid therapeutic planning. Gene expression profiles of EC were measured and relationship to therapeutic response assessed.\nMETHODS: Tumor biopsy samples taken from 46 EC patients before neoadjuvant CRT were analyzed on 10.5K cDNA microarrays. Response to treatment was assessed and correlated to gene expression patterns by using a support vector machine learning algorithm.\nRESULTS: Complete clinical response at conclusion of CRT was achieved in 6 of 21 squamous cell carcinoma (SCC) and 11 of 25 adenocarcinoma (AC) patients. CRT response was an independent prognostic factor for survival (P < .001). A range of support vector machine models incorporating 10 to 1000 genes produced a predictive performance of tumor response to CRT peaking at 87% in SCC, but a distinct positive prediction profile was unobtainable for AC. A 32-gene classifier was produced, and by means of this classifier, 10 of 21 SCC patients could be accurately identified as having disease with an incomplete response to therapy, and thus unlikely to benefit from neoadjuvant CRT.\nCONCLUSIONS: Our study identifies a 32-gene classifier that can be used to predict response to neoadjuvant CRT in SCC. However, because of the molecular diversity between the two histological subtypes of EC, when considering the AC and SCC samples as a single cohort, a predictive profile could not be resolved, and a negative predictive profile was observed for AC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1245/s10434-007-9550-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6728811", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1105545", 
        "issn": [
          "1068-9265", 
          "1534-4681"
        ], 
        "name": "Annals of Surgical Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Pretreatment Gene Expression Profiles Can Be Used to Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer", 
    "pagination": "3602-3609", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f0aee726d0e5dfc386b55371dae7175d757c3cf40eba70747c4aef38e4ce9667"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17896157"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9420840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1245/s10434-007-9550-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050524686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1245/s10434-007-9550-1", 
      "https://app.dimensions.ai/details/publication/pub.1050524686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1245/s10434-007-9550-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1245/s10434-007-9550-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1245/s10434-007-9550-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1245/s10434-007-9550-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1245/s10434-007-9550-1'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      82 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1245/s10434-007-9550-1 schema:about N15e287f86b664b828ee22edad4945a0a
2 N3444634ed86240fa90b3d275c897221e
3 N3d1e835094c24d159b9d991698e5a6e2
4 N40d5567754014b1085a0a39af2faf94b
5 N43b86b40dae4417aa9794afbfe752788
6 N5daec09e94464a23b2472c6e16cd8ca7
7 N6deffe50ce1a44f687ee1476e464f7d3
8 N81d47685621448fc9879cb6c8cef32bd
9 N839d6fc15c454595b6835189255edf52
10 N8e56657a39d142acb6a4d7cd4ce4367b
11 Na1d4fd223d57470889f6c05676d60d06
12 Nab4a6c411da64d84b599bdcbcee93e88
13 Nae926d5a66ef4c0987cab132a642a226
14 Ncc955195e6dc48788d87d5f1db11ff57
15 Nd7db60ca30f343729d433ac53bfac24b
16 Nda73c8c47b7f40429032ed9b53ac9a76
17 Ne70b07fc5832482db6a08e4e0de89fcb
18 Ne96486ee15274fc6b6940d803b0992c2
19 Nf2fc1b4438384b048391a0272c32608c
20 Nfa3a6a8c61364b138d625ba7e144e1cf
21 Nff050ae1abb944d7bca8b7930a24a9b2
22 anzsrc-for:11
23 anzsrc-for:1112
24 schema:author Nb883bc172ccb4bb19802fd3d2e87b889
25 schema:citation sg:pub.10.1007/s00259-005-0040-z
26 sg:pub.10.1038/4455
27 https://app.dimensions.ai/details/publication/pub.1075287149
28 https://app.dimensions.ai/details/publication/pub.1081738816
29 https://doi.org/10.1002/(sici)1097-0142(19970915)80:6<1011::aid-cncr2>3.0.co;2-c
30 https://doi.org/10.1002/cncr.21346
31 https://doi.org/10.1002/ijc.22501
32 https://doi.org/10.1016/j.cell.2004.06.010
33 https://doi.org/10.1016/s0002-9440(10)65346-1
34 https://doi.org/10.1016/s0140-6736(03)14023-8
35 https://doi.org/10.1016/s0748-7983(97)92364-7
36 https://doi.org/10.1016/s0959-8049(01)00353-7
37 https://doi.org/10.1046/j.1365-2168.2001.01670.x
38 https://doi.org/10.1056/nejm199903183401101
39 https://doi.org/10.1073/pnas.87.5.1663
40 https://doi.org/10.1073/pnas.95.25.14863
41 https://doi.org/10.1073/pnas.97.1.262
42 https://doi.org/10.1080/028418602753669472
43 https://doi.org/10.1093/bioinformatics/16.10.906
44 https://doi.org/10.1093/jnci/95.1.14
45 https://doi.org/10.1101/gr.397002
46 https://doi.org/10.1111/j.1445-2197.1996.tb01167.x
47 https://doi.org/10.1158/0008-5472.can-04-3617
48 https://doi.org/10.1158/1078-0432.ccr-04-1387
49 https://doi.org/10.1158/1078-0432.ccr-05-0042
50 https://doi.org/10.1200/jco.1993.11.6.1118
51 https://doi.org/10.1200/jco.2005.00.406
52 https://doi.org/10.1200/jco.2005.03.3688
53 https://doi.org/10.1200/jco.2005.03.8810
54 https://doi.org/10.1378/chest.122.4.1302
55 https://doi.org/10.3322/canjclin.55.2.74
56 https://doi.org/10.3892/ijo.28.6.1345
57 schema:datePublished 2007-12
58 schema:datePublishedReg 2007-12-01
59 schema:description BACKGROUND: The use of neoadjuvant therapy, in particular chemoradiotherapy (CRT), in the treatment of esophageal cancer (EC) remains controversial. The ability to predict treatment response in an individual EC patient would greatly aid therapeutic planning. Gene expression profiles of EC were measured and relationship to therapeutic response assessed. METHODS: Tumor biopsy samples taken from 46 EC patients before neoadjuvant CRT were analyzed on 10.5K cDNA microarrays. Response to treatment was assessed and correlated to gene expression patterns by using a support vector machine learning algorithm. RESULTS: Complete clinical response at conclusion of CRT was achieved in 6 of 21 squamous cell carcinoma (SCC) and 11 of 25 adenocarcinoma (AC) patients. CRT response was an independent prognostic factor for survival (P < .001). A range of support vector machine models incorporating 10 to 1000 genes produced a predictive performance of tumor response to CRT peaking at 87% in SCC, but a distinct positive prediction profile was unobtainable for AC. A 32-gene classifier was produced, and by means of this classifier, 10 of 21 SCC patients could be accurately identified as having disease with an incomplete response to therapy, and thus unlikely to benefit from neoadjuvant CRT. CONCLUSIONS: Our study identifies a 32-gene classifier that can be used to predict response to neoadjuvant CRT in SCC. However, because of the molecular diversity between the two histological subtypes of EC, when considering the AC and SCC samples as a single cohort, a predictive profile could not be resolved, and a negative predictive profile was observed for AC.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf N52cf0a870071401ea506117907af6702
64 Nef61e731fff940d5852a48a58f2c2620
65 sg:journal.1105545
66 schema:name Pretreatment Gene Expression Profiles Can Be Used to Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer
67 schema:pagination 3602-3609
68 schema:productId N00b0ec3690594e52af0c274f6353605d
69 N2e6cc01ad17246fa8e65d5b7dcc81f12
70 N549a9340b41d44b590f01ba1d78af7c4
71 N64d8281f660e49b28599d8ff7b1ad55a
72 Nafbf0a76bd7d4f4e95db289851b7590a
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524686
74 https://doi.org/10.1245/s10434-007-9550-1
75 schema:sdDatePublished 2019-04-10T21:34
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Na93eab8dcd6b46a8b155628d8e327f35
78 schema:url http://link.springer.com/10.1245/s10434-007-9550-1
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N00b0ec3690594e52af0c274f6353605d schema:name nlm_unique_id
83 schema:value 9420840
84 rdf:type schema:PropertyValue
85 N15e287f86b664b828ee22edad4945a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Middle Aged
87 rdf:type schema:DefinedTerm
88 N2e6cc01ad17246fa8e65d5b7dcc81f12 schema:name pubmed_id
89 schema:value 17896157
90 rdf:type schema:PropertyValue
91 N3444634ed86240fa90b3d275c897221e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N3d1e835094c24d159b9d991698e5a6e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Lymphatic Metastasis
96 rdf:type schema:DefinedTerm
97 N3d497e0492ee4686b2f290e1c6cd22c8 rdf:first sg:person.07721206642.38
98 rdf:rest rdf:nil
99 N4003b212d94a4190935311ca1b1291e5 rdf:first sg:person.01273777252.97
100 rdf:rest N5d40afa0f9e6487894d2b22805ad620c
101 N40d5567754014b1085a0a39af2faf94b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Combined Modality Therapy
103 rdf:type schema:DefinedTerm
104 N43b86b40dae4417aa9794afbfe752788 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Male
106 rdf:type schema:DefinedTerm
107 N48ef14bc2a6a4c06bfa7c03ab2df012f rdf:first sg:person.01143533316.09
108 rdf:rest N4003b212d94a4190935311ca1b1291e5
109 N52cf0a870071401ea506117907af6702 schema:volumeNumber 14
110 rdf:type schema:PublicationVolume
111 N549a9340b41d44b590f01ba1d78af7c4 schema:name doi
112 schema:value 10.1245/s10434-007-9550-1
113 rdf:type schema:PropertyValue
114 N55bba54ef71d4278bee776665b323829 rdf:first sg:person.0705640631.51
115 rdf:rest N3d497e0492ee4686b2f290e1c6cd22c8
116 N5d40afa0f9e6487894d2b22805ad620c rdf:first sg:person.01047300510.13
117 rdf:rest Nb074d0b8ef9f4336bc477f3c723bb465
118 N5daec09e94464a23b2472c6e16cd8ca7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Oligonucleotide Array Sequence Analysis
120 rdf:type schema:DefinedTerm
121 N64d8281f660e49b28599d8ff7b1ad55a schema:name readcube_id
122 schema:value f0aee726d0e5dfc386b55371dae7175d757c3cf40eba70747c4aef38e4ce9667
123 rdf:type schema:PropertyValue
124 N6deffe50ce1a44f687ee1476e464f7d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Aged
126 rdf:type schema:DefinedTerm
127 N81d47685621448fc9879cb6c8cef32bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Immunoenzyme Techniques
129 rdf:type schema:DefinedTerm
130 N839d6fc15c454595b6835189255edf52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Treatment Outcome
132 rdf:type schema:DefinedTerm
133 N8e56657a39d142acb6a4d7cd4ce4367b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Neoadjuvant Therapy
135 rdf:type schema:DefinedTerm
136 Na1d4fd223d57470889f6c05676d60d06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Carcinoma, Squamous Cell
138 rdf:type schema:DefinedTerm
139 Na93eab8dcd6b46a8b155628d8e327f35 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 Nab4a6c411da64d84b599bdcbcee93e88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Antineoplastic Combined Chemotherapy Protocols
143 rdf:type schema:DefinedTerm
144 Nae926d5a66ef4c0987cab132a642a226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Esophagectomy
146 rdf:type schema:DefinedTerm
147 Nafbf0a76bd7d4f4e95db289851b7590a schema:name dimensions_id
148 schema:value pub.1050524686
149 rdf:type schema:PropertyValue
150 Nb074d0b8ef9f4336bc477f3c723bb465 rdf:first sg:person.01051274441.72
151 rdf:rest Nfc2d30c728d144a8b61f7b5f1a69f1c8
152 Nb883bc172ccb4bb19802fd3d2e87b889 rdf:first sg:person.01133501561.34
153 rdf:rest N48ef14bc2a6a4c06bfa7c03ab2df012f
154 Ncc955195e6dc48788d87d5f1db11ff57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prognosis
156 rdf:type schema:DefinedTerm
157 Nd7db60ca30f343729d433ac53bfac24b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Adenocarcinoma
159 rdf:type schema:DefinedTerm
160 Nda73c8c47b7f40429032ed9b53ac9a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Survival Rate
162 rdf:type schema:DefinedTerm
163 Ne70b07fc5832482db6a08e4e0de89fcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Female
165 rdf:type schema:DefinedTerm
166 Ne96486ee15274fc6b6940d803b0992c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Esophageal Neoplasms
168 rdf:type schema:DefinedTerm
169 Nef61e731fff940d5852a48a58f2c2620 schema:issueNumber 12
170 rdf:type schema:PublicationIssue
171 Nf2fc1b4438384b048391a0272c32608c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Biomarkers, Tumor
173 rdf:type schema:DefinedTerm
174 Nfa3a6a8c61364b138d625ba7e144e1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Neoplasm Staging
176 rdf:type schema:DefinedTerm
177 Nfc2d30c728d144a8b61f7b5f1a69f1c8 rdf:first sg:person.01161255563.89
178 rdf:rest N55bba54ef71d4278bee776665b323829
179 Nff050ae1abb944d7bca8b7930a24a9b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Gene Expression Profiling
181 rdf:type schema:DefinedTerm
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
186 schema:name Oncology and Carcinogenesis
187 rdf:type schema:DefinedTerm
188 sg:grant.6728811 http://pending.schema.org/fundedItem sg:pub.10.1245/s10434-007-9550-1
189 rdf:type schema:MonetaryGrant
190 sg:journal.1105545 schema:issn 1068-9265
191 1534-4681
192 schema:name Annals of Surgical Oncology
193 rdf:type schema:Periodical
194 sg:person.01047300510.13 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
195 schema:familyName Ciavarella
196 schema:givenName Marianne L.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047300510.13
198 rdf:type schema:Person
199 sg:person.01051274441.72 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
200 schema:familyName Raskutti
201 schema:givenName Garvesh
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051274441.72
203 rdf:type schema:Person
204 sg:person.01133501561.34 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
205 schema:familyName Duong
206 schema:givenName Cuong
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501561.34
208 rdf:type schema:Person
209 sg:person.01143533316.09 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
210 schema:familyName Greenawalt
211 schema:givenName Danielle M.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143533316.09
213 rdf:type schema:Person
214 sg:person.01161255563.89 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
215 schema:familyName Murray
216 schema:givenName William K.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161255563.89
218 rdf:type schema:Person
219 sg:person.01273777252.97 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
220 schema:familyName Kowalczyk
221 schema:givenName Adam
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273777252.97
223 rdf:type schema:Person
224 sg:person.0705640631.51 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
225 schema:familyName Phillips
226 schema:givenName Wayne A.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705640631.51
228 rdf:type schema:Person
229 sg:person.07721206642.38 schema:affiliation https://www.grid.ac/institutes/grid.1055.1
230 schema:familyName Thomas
231 schema:givenName Robert J. S.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721206642.38
233 rdf:type schema:Person
234 sg:pub.10.1007/s00259-005-0040-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005438519
235 https://doi.org/10.1007/s00259-005-0040-z
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/4455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027815464
238 https://doi.org/10.1038/4455
239 rdf:type schema:CreativeWork
240 https://app.dimensions.ai/details/publication/pub.1075287149 schema:CreativeWork
241 https://app.dimensions.ai/details/publication/pub.1081738816 schema:CreativeWork
242 https://doi.org/10.1002/(sici)1097-0142(19970915)80:6<1011::aid-cncr2>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1042323260
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/cncr.21346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041394111
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/ijc.22501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053707374
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.cell.2004.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024111398
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s0002-9440(10)65346-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020924558
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s0140-6736(03)14023-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017992521
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/s0748-7983(97)92364-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048277310
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s0959-8049(01)00353-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053686860
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1046/j.1365-2168.2001.01670.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027193527
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1056/nejm199903183401101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422943
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1073/pnas.87.5.1663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007853142
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1073/pnas.97.1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048892448
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1080/028418602753669472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044149871
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/bioinformatics/16.10.906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029326163
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/jnci/95.1.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023174537
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1101/gr.397002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020023598
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1111/j.1445-2197.1996.tb01167.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013604743
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1158/0008-5472.can-04-3617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007413471
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1158/1078-0432.ccr-04-1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101705
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1158/1078-0432.ccr-05-0042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043627582
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1200/jco.1993.11.6.1118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082833658
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1200/jco.2005.00.406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017005264
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1200/jco.2005.03.3688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047148845
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1200/jco.2005.03.8810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033253268
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1378/chest.122.4.1302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015126111
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3322/canjclin.55.2.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020321
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3892/ijo.28.6.1345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071516036
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
299 schema:name Life Sciences, National Information and Communications Technology Australia and Department Electrical & Electronic Engineering, The University of Melbourne, 3010, Parkville, Victoria, Australia
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.1055.1 schema:alternateName Peter MacCallum Cancer Centre
302 schema:name Department of Pathology, Peter MacCallum Cancer Centre, St. Andrew’s Place, 3002, East Melbourne, Victoria, Australia
303 Division of Surgical Oncology, Peter MacCallum Cancer Centre, St. Andrew’s Place, 3002, East Melbourne, Victoria, Australia
304 University of Melbourne Department of Surgery, St. Vincent’s Hospital, 3065, Fitzroy, Victoria, Australia
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...