Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: the Synergistic Effect of Polymers and Drug-Polymer(s) Interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Xiangjun Shi, Tiantian Xu, Wan Huang, Baibai Fan, Xiaoxia Sheng

ABSTRACT

The purpose of this study was to investigate the synergistic effect of polymers and drug-polymer(s) interactions on the improved stability and bioavailability of telmisartan (TEL) ternary solid dispersions. As a water-insoluble drug, 40 and 160 mg doses of TEL tablets exhibited bioavailabilities of 42% and 58%, respectively. Through polymer screening, PVP K30 and/or Soluplus were selected and used at different concentrations to prepare TEL amorphous solid dispersions by solvent evaporation. Compared to pure TEL and TEL-PVP K30/Soluplus binary solid dispersions, TEL-PVP K30–Soluplus ternary solid dispersions demonstrated significant advantages, including higher dissolution (over 90% release at 60 min), better amorphous stability (physically stable in 90 days), and improved oral bioavailability (Cmax of 5535.819 ± 325.67 ng/mL and tmax of 1 h). These advantages were related to the complementarity of PVP K30 and Soluplus on TEL. PVP K30 had a better activity to solubilize TEL and achieved a high TEL initial concentration in dissolution media. Simultaneously, the ability of Soluplus to assist in the maintenance of supersaturation played an important role. PVP K30 and Soluplus together inhibited crystallization of the drug at different stages. The existence and intensity of drug-polymer interactions were also determined by DSC (Tg determination) and FT-IR. At the molecular level, a hypothesis was also proposed that the enhancements resulted from the contribution of the synergistic effect between PVP K30 and Soluplus. These results suggested that two polymers, in a combination and via a synergistic effect, could further enhance the bioavailability and amorphous stability of ternary solid dispersions. More... »

PAGES

143

References to SciGraph publications

  • 2010-02-12. Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution in PHARMACEUTICAL RESEARCH
  • 2002-01. Influence of Hydrodynamics and Particle Size on the Absorption of Felodipine in Labradors in PHARMACEUTICAL RESEARCH
  • 2016-10-20. Extensive Diminution of Particle Size and Amorphization of a Crystalline Drug Attained by Eminent Technology of Solid Dispersion: A Comparative Study in AAPS PHARMSCITECH
  • 2008-08-27. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation in JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY
  • 2016-12-21. Acyclovir-Polyethylene Glycol 6000 Binary Dispersions: Mechanistic Insights in AAPS PHARMSCITECH
  • 2018-06-04. Effects of Dendrimer-Like Biopolymers on Physical Stability of Amorphous Solid Dispersions and Drug Permeability Across Caco-2 Cell Monolayers in AAPS PHARMSCITECH
  • 2018-07-24. Tablet Formulation of a Polymeric Solid Dispersion Containing Amorphous Alkalinized Telmisartan in AAPS PHARMSCITECH
  • 2018-03-14. Improved Vemurafenib Dissolution and Pharmacokinetics as an Amorphous Solid Dispersion Produced by KinetiSol® Processing in AAPS PHARMSCITECH
  • 2013-10-12. Correlation of Inhibitory Effects of Polymers on Indomethacin Precipitation in Solution and Amorphous Solid Crystallization Based on Molecular Interaction in PHARMACEUTICAL RESEARCH
  • 2009-10-20. Evaluation of Griseofulvin Binary and Ternary Solid Dispersions with HPMCAS in AAPS PHARMSCITECH
  • 2016-02-16. Characterization and In Vitro Evaluation of the Complexes of Posaconazole with β- and 2,6-di-O-methyl-β-cyclodextrin in AAPS PHARMSCITECH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1208/s12249-019-1358-3

    DOI

    http://dx.doi.org/10.1208/s12249-019-1358-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112850978

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30887265


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pharmacology and Pharmaceutical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antihypertensive Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Availability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Calorimetry, Differential Scanning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, High Pressure Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Stability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyethylene Glycols", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polyvinyls", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Powder Diffraction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats, Sprague-Dawley", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectroscopy, Fourier Transform Infrared", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Telmisartan", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Xiangjun", 
            "id": "sg:person.011177063074.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011177063074.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Tiantian", 
            "id": "sg:person.011466235343.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011466235343.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Wan", 
            "id": "sg:person.016576345543.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576345543.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Baibai", 
            "id": "sg:person.013656556743.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656556743.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Soli Pharma Sci-Tech Co., Ltd, Economic & Technical Development Zone, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Soli Pharma Sci-Tech Co., Ltd, Economic & Technical Development Zone, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheng", 
            "givenName": "Xiaoxia", 
            "id": "sg:person.016517057602.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517057602.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1208/s12249-018-0988-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101528674", 
              "https://doi.org/10.1208/s12249-018-0988-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/s12249-016-0497-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032919168", 
              "https://doi.org/10.1208/s12249-016-0497-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/s12249-016-0647-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049003684", 
              "https://doi.org/10.1208/s12249-016-0647-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-009-0021-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036468424", 
              "https://doi.org/10.1007/s11095-009-0021-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013651215061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001823445", 
              "https://doi.org/10.1023/a:1013651215061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/s12249-009-9319-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034724443", 
              "https://doi.org/10.1208/s12249-009-9319-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-013-1178-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000660789", 
              "https://doi.org/10.1007/s11095-013-1178-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/s12249-016-0686-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006964344", 
              "https://doi.org/10.1208/s12249-016-0686-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/s12249-018-1080-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104385598", 
              "https://doi.org/10.1208/s12249-018-1080-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10847-008-9490-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013148326", 
              "https://doi.org/10.1007/s10847-008-9490-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1208/s12249-018-1124-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105808307", 
              "https://doi.org/10.1208/s12249-018-1124-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-18", 
        "datePublishedReg": "2019-03-18", 
        "description": "The purpose of this study was to investigate the synergistic effect of polymers and drug-polymer(s) interactions on the improved stability and bioavailability of telmisartan (TEL) ternary solid dispersions. As a water-insoluble drug, 40 and 160\u00a0mg doses of TEL tablets exhibited bioavailabilities of 42% and 58%, respectively. Through polymer screening, PVP K30 and/or Soluplus were selected and used at different concentrations to prepare TEL amorphous solid dispersions by solvent evaporation. Compared to pure TEL and TEL-PVP K30/Soluplus binary solid dispersions, TEL-PVP K30\u2013Soluplus ternary solid dispersions demonstrated significant advantages, including higher dissolution (over 90% release at 60\u00a0min), better amorphous stability (physically stable in 90\u00a0days), and improved oral bioavailability (Cmax of 5535.819\u2009\u00b1\u2009325.67\u00a0ng/mL and tmax of 1\u00a0h). These advantages were related to the complementarity of PVP K30 and Soluplus on TEL. PVP K30 had a better activity to solubilize TEL and achieved a high TEL initial concentration in dissolution media. Simultaneously, the ability of Soluplus to assist in the maintenance of supersaturation played an important role. PVP K30 and Soluplus together inhibited crystallization of the drug at different stages. The existence and intensity of drug-polymer interactions were also determined by DSC (Tg determination) and FT-IR. At the molecular level, a hypothesis was also proposed that the enhancements resulted from the contribution of the synergistic effect between PVP K30 and Soluplus. These results suggested that two polymers, in a combination and via a synergistic effect, could further enhance the bioavailability and amorphous stability of ternary solid dispersions.", 
        "genre": "article", 
        "id": "sg:pub.10.1208/s12249-019-1358-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8154816", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023420", 
            "issn": [
              "1530-9932"
            ], 
            "name": "AAPS PharmSciTech", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "ternary solid dispersions", 
          "solid dispersions", 
          "PVP K30", 
          "drug-polymer interactions", 
          "amorphous stability", 
          "water-insoluble drugs", 
          "binary solid dispersions", 
          "amorphous solid dispersions", 
          "maintenance of supersaturation", 
          "FT-IR", 
          "synergistic effect", 
          "polymer screening", 
          "solvent evaporation", 
          "bioavailability enhancement", 
          "Soluplus", 
          "dissolution medium", 
          "higher dissolution", 
          "polymers", 
          "K30", 
          "improved stability", 
          "good activity", 
          "initial concentration", 
          "oral bioavailability", 
          "dispersion", 
          "molecular level", 
          "stability", 
          "bioavailability", 
          "different concentrations", 
          "DSC", 
          "dissolution", 
          "crystallization", 
          "interaction", 
          "concentration", 
          "evaporation", 
          "enhancement", 
          "supersaturation", 
          "significant advantages", 
          "drugs", 
          "tablets", 
          "effect", 
          "medium", 
          "advantages", 
          "important role", 
          "intensity", 
          "activity", 
          "screening", 
          "complementarity", 
          "combination", 
          "ability", 
          "contribution", 
          "results", 
          "existence", 
          "study", 
          "different stages", 
          "TEL", 
          "role", 
          "levels", 
          "stage", 
          "purpose", 
          "doses", 
          "hypothesis", 
          "maintenance", 
          "telmisartan (TEL) ternary solid dispersions", 
          "TEL tablets", 
          "TEL amorphous solid dispersions", 
          "pure TEL", 
          "TEL-PVP K30/Soluplus binary solid dispersions", 
          "K30/Soluplus binary solid dispersions", 
          "Soluplus binary solid dispersions", 
          "TEL-PVP K30\u2013Soluplus ternary solid dispersions", 
          "K30\u2013Soluplus ternary solid dispersions", 
          "better amorphous stability", 
          "high TEL initial concentration", 
          "TEL initial concentration", 
          "ability of Soluplus"
        ], 
        "name": "Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: the Synergistic Effect of Polymers and Drug-Polymer(s) Interactions", 
        "pagination": "143", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112850978"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1208/s12249-019-1358-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30887265"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1208/s12249-019-1358-3", 
          "https://app.dimensions.ai/details/publication/pub.1112850978"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_828.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1208/s12249-019-1358-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1208/s12249-019-1358-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1208/s12249-019-1358-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1208/s12249-019-1358-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1208/s12249-019-1358-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      22 PREDICATES      128 URIs      109 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1208/s12249-019-1358-3 schema:about N002bfaeb082a4bbeb4183420209d227b
    2 N2fe98faba6784aae816ab6e83849600a
    3 N325a0d1a049542ce82d8efd9ac6de982
    4 N61f028264731481e9531eae9c84f56bb
    5 N64ee6783d1cf40fd8b8a82a7b467bf22
    6 N72e49c3529e840708dbecb003bd3e4f5
    7 N7f5512b287c8415fa161c195ec85e58b
    8 N8755b7d0336f429889f6189141642810
    9 N91156ae3989b4bebb6714d9c3125613d
    10 N92163e5e56634ca782a28e854e1bef72
    11 Nc012d18d477b421e8542958cf5a1b5f3
    12 Nc5dc404a3d8c4dd596a0f246fd4823c6
    13 Nd08b752e8b764e44aef5ea3186bb7245
    14 Nf9d5fd38f8e445f895e1f6fae052022b
    15 Nfa3d36c18e0c4745bf350792e8e9fae5
    16 Nff240ba74c02494c97edfcdbb6b37a29
    17 anzsrc-for:11
    18 anzsrc-for:1115
    19 schema:author N4efc17c6a5bb4658a260ae3b3a9c6da6
    20 schema:citation sg:pub.10.1007/s10847-008-9490-9
    21 sg:pub.10.1007/s11095-009-0021-1
    22 sg:pub.10.1007/s11095-013-1178-1
    23 sg:pub.10.1023/a:1013651215061
    24 sg:pub.10.1208/s12249-009-9319-x
    25 sg:pub.10.1208/s12249-016-0497-z
    26 sg:pub.10.1208/s12249-016-0647-3
    27 sg:pub.10.1208/s12249-016-0686-9
    28 sg:pub.10.1208/s12249-018-0988-1
    29 sg:pub.10.1208/s12249-018-1080-6
    30 sg:pub.10.1208/s12249-018-1124-y
    31 schema:datePublished 2019-03-18
    32 schema:datePublishedReg 2019-03-18
    33 schema:description The purpose of this study was to investigate the synergistic effect of polymers and drug-polymer(s) interactions on the improved stability and bioavailability of telmisartan (TEL) ternary solid dispersions. As a water-insoluble drug, 40 and 160 mg doses of TEL tablets exhibited bioavailabilities of 42% and 58%, respectively. Through polymer screening, PVP K30 and/or Soluplus were selected and used at different concentrations to prepare TEL amorphous solid dispersions by solvent evaporation. Compared to pure TEL and TEL-PVP K30/Soluplus binary solid dispersions, TEL-PVP K30–Soluplus ternary solid dispersions demonstrated significant advantages, including higher dissolution (over 90% release at 60 min), better amorphous stability (physically stable in 90 days), and improved oral bioavailability (Cmax of 5535.819 ± 325.67 ng/mL and tmax of 1 h). These advantages were related to the complementarity of PVP K30 and Soluplus on TEL. PVP K30 had a better activity to solubilize TEL and achieved a high TEL initial concentration in dissolution media. Simultaneously, the ability of Soluplus to assist in the maintenance of supersaturation played an important role. PVP K30 and Soluplus together inhibited crystallization of the drug at different stages. The existence and intensity of drug-polymer interactions were also determined by DSC (Tg determination) and FT-IR. At the molecular level, a hypothesis was also proposed that the enhancements resulted from the contribution of the synergistic effect between PVP K30 and Soluplus. These results suggested that two polymers, in a combination and via a synergistic effect, could further enhance the bioavailability and amorphous stability of ternary solid dispersions.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N83f6136b53794e6a97ceb4724824042d
    38 Nc6318b47c23e4584ac337d0e7e27adb8
    39 sg:journal.1023420
    40 schema:keywords DSC
    41 FT-IR
    42 K30
    43 K30/Soluplus binary solid dispersions
    44 K30–Soluplus ternary solid dispersions
    45 PVP K30
    46 Soluplus
    47 Soluplus binary solid dispersions
    48 TEL
    49 TEL amorphous solid dispersions
    50 TEL initial concentration
    51 TEL tablets
    52 TEL-PVP K30/Soluplus binary solid dispersions
    53 TEL-PVP K30–Soluplus ternary solid dispersions
    54 ability
    55 ability of Soluplus
    56 activity
    57 advantages
    58 amorphous solid dispersions
    59 amorphous stability
    60 better amorphous stability
    61 binary solid dispersions
    62 bioavailability
    63 bioavailability enhancement
    64 combination
    65 complementarity
    66 concentration
    67 contribution
    68 crystallization
    69 different concentrations
    70 different stages
    71 dispersion
    72 dissolution
    73 dissolution medium
    74 doses
    75 drug-polymer interactions
    76 drugs
    77 effect
    78 enhancement
    79 evaporation
    80 existence
    81 good activity
    82 high TEL initial concentration
    83 higher dissolution
    84 hypothesis
    85 important role
    86 improved stability
    87 initial concentration
    88 intensity
    89 interaction
    90 levels
    91 maintenance
    92 maintenance of supersaturation
    93 medium
    94 molecular level
    95 oral bioavailability
    96 polymer screening
    97 polymers
    98 pure TEL
    99 purpose
    100 results
    101 role
    102 screening
    103 significant advantages
    104 solid dispersions
    105 solvent evaporation
    106 stability
    107 stage
    108 study
    109 supersaturation
    110 synergistic effect
    111 tablets
    112 telmisartan (TEL) ternary solid dispersions
    113 ternary solid dispersions
    114 water-insoluble drugs
    115 schema:name Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: the Synergistic Effect of Polymers and Drug-Polymer(s) Interactions
    116 schema:pagination 143
    117 schema:productId N14275a0ea4304c1da5b071bc7abc33d7
    118 N14426ca2b6d34f4f9451a501fd3ddf53
    119 Nb4288b9d17b04bada2039cf43672de7d
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112850978
    121 https://doi.org/10.1208/s12249-019-1358-3
    122 schema:sdDatePublished 2021-11-01T18:36
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N47d2b5f641464795b7553f1c82c20405
    125 schema:url https://doi.org/10.1208/s12249-019-1358-3
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N002bfaeb082a4bbeb4183420209d227b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Telmisartan
    131 rdf:type schema:DefinedTerm
    132 N14275a0ea4304c1da5b071bc7abc33d7 schema:name dimensions_id
    133 schema:value pub.1112850978
    134 rdf:type schema:PropertyValue
    135 N14426ca2b6d34f4f9451a501fd3ddf53 schema:name pubmed_id
    136 schema:value 30887265
    137 rdf:type schema:PropertyValue
    138 N2fe98faba6784aae816ab6e83849600a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Male
    140 rdf:type schema:DefinedTerm
    141 N325a0d1a049542ce82d8efd9ac6de982 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Biological Availability
    143 rdf:type schema:DefinedTerm
    144 N47d2b5f641464795b7553f1c82c20405 schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 N49dc191cf2444eb09b68005ddc40b1d2 rdf:first sg:person.011466235343.27
    147 rdf:rest N9652926e7cf742c6b769e1b83fd5ac3b
    148 N4efc17c6a5bb4658a260ae3b3a9c6da6 rdf:first sg:person.011177063074.21
    149 rdf:rest N49dc191cf2444eb09b68005ddc40b1d2
    150 N61f028264731481e9531eae9c84f56bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Animals
    152 rdf:type schema:DefinedTerm
    153 N64ee6783d1cf40fd8b8a82a7b467bf22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Drug Stability
    155 rdf:type schema:DefinedTerm
    156 N72e49c3529e840708dbecb003bd3e4f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Calorimetry, Differential Scanning
    158 rdf:type schema:DefinedTerm
    159 N7f5512b287c8415fa161c195ec85e58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Spectroscopy, Fourier Transform Infrared
    161 rdf:type schema:DefinedTerm
    162 N83f6136b53794e6a97ceb4724824042d schema:volumeNumber 20
    163 rdf:type schema:PublicationVolume
    164 N8755b7d0336f429889f6189141642810 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Polyethylene Glycols
    166 rdf:type schema:DefinedTerm
    167 N887cf2ebf74a423098c3379e89f3d57e rdf:first sg:person.013656556743.33
    168 rdf:rest Nf27e4e99f5a34a72a82d019daec96d9e
    169 N91156ae3989b4bebb6714d9c3125613d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Antihypertensive Agents
    171 rdf:type schema:DefinedTerm
    172 N92163e5e56634ca782a28e854e1bef72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Chromatography, High Pressure Liquid
    174 rdf:type schema:DefinedTerm
    175 N9652926e7cf742c6b769e1b83fd5ac3b rdf:first sg:person.016576345543.45
    176 rdf:rest N887cf2ebf74a423098c3379e89f3d57e
    177 Nb4288b9d17b04bada2039cf43672de7d schema:name doi
    178 schema:value 10.1208/s12249-019-1358-3
    179 rdf:type schema:PropertyValue
    180 Nc012d18d477b421e8542958cf5a1b5f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Polyvinyls
    182 rdf:type schema:DefinedTerm
    183 Nc5dc404a3d8c4dd596a0f246fd4823c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Polymers
    185 rdf:type schema:DefinedTerm
    186 Nc6318b47c23e4584ac337d0e7e27adb8 schema:issueNumber 4
    187 rdf:type schema:PublicationIssue
    188 Nd08b752e8b764e44aef5ea3186bb7245 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Powder Diffraction
    190 rdf:type schema:DefinedTerm
    191 Nf27e4e99f5a34a72a82d019daec96d9e rdf:first sg:person.016517057602.61
    192 rdf:rest rdf:nil
    193 Nf9d5fd38f8e445f895e1f6fae052022b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Rats
    195 rdf:type schema:DefinedTerm
    196 Nfa3d36c18e0c4745bf350792e8e9fae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Rats, Sprague-Dawley
    198 rdf:type schema:DefinedTerm
    199 Nff240ba74c02494c97edfcdbb6b37a29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Solubility
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Medical and Health Sciences
    204 rdf:type schema:DefinedTerm
    205 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Pharmacology and Pharmaceutical Sciences
    207 rdf:type schema:DefinedTerm
    208 sg:grant.8154816 http://pending.schema.org/fundedItem sg:pub.10.1208/s12249-019-1358-3
    209 rdf:type schema:MonetaryGrant
    210 sg:journal.1023420 schema:issn 1530-9932
    211 schema:name AAPS PharmSciTech
    212 schema:publisher Springer Nature
    213 rdf:type schema:Periodical
    214 sg:person.011177063074.21 schema:affiliation grid-institutes:grid.469325.f
    215 schema:familyName Shi
    216 schema:givenName Xiangjun
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011177063074.21
    218 rdf:type schema:Person
    219 sg:person.011466235343.27 schema:affiliation grid-institutes:grid.469325.f
    220 schema:familyName Xu
    221 schema:givenName Tiantian
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011466235343.27
    223 rdf:type schema:Person
    224 sg:person.013656556743.33 schema:affiliation grid-institutes:grid.469325.f
    225 schema:familyName Fan
    226 schema:givenName Baibai
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656556743.33
    228 rdf:type schema:Person
    229 sg:person.016517057602.61 schema:affiliation grid-institutes:None
    230 schema:familyName Sheng
    231 schema:givenName Xiaoxia
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517057602.61
    233 rdf:type schema:Person
    234 sg:person.016576345543.45 schema:affiliation grid-institutes:grid.469325.f
    235 schema:familyName Huang
    236 schema:givenName Wan
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576345543.45
    238 rdf:type schema:Person
    239 sg:pub.10.1007/s10847-008-9490-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013148326
    240 https://doi.org/10.1007/s10847-008-9490-9
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11095-009-0021-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036468424
    243 https://doi.org/10.1007/s11095-009-0021-1
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11095-013-1178-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000660789
    246 https://doi.org/10.1007/s11095-013-1178-1
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1023/a:1013651215061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001823445
    249 https://doi.org/10.1023/a:1013651215061
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1208/s12249-009-9319-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034724443
    252 https://doi.org/10.1208/s12249-009-9319-x
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1208/s12249-016-0497-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032919168
    255 https://doi.org/10.1208/s12249-016-0497-z
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1208/s12249-016-0647-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049003684
    258 https://doi.org/10.1208/s12249-016-0647-3
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1208/s12249-016-0686-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006964344
    261 https://doi.org/10.1208/s12249-016-0686-9
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1208/s12249-018-0988-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101528674
    264 https://doi.org/10.1208/s12249-018-0988-1
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1208/s12249-018-1080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104385598
    267 https://doi.org/10.1208/s12249-018-1080-6
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1208/s12249-018-1124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105808307
    270 https://doi.org/10.1208/s12249-018-1124-y
    271 rdf:type schema:CreativeWork
    272 grid-institutes:None schema:alternateName Soli Pharma Sci-Tech Co., Ltd, Economic & Technical Development Zone, Hangzhou, People’s Republic of China
    273 schema:name Soli Pharma Sci-Tech Co., Ltd, Economic & Technical Development Zone, Hangzhou, People’s Republic of China
    274 rdf:type schema:Organization
    275 grid-institutes:grid.469325.f schema:alternateName Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People’s Republic of China
    276 schema:name Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People’s Republic of China
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...