Model-Based Conditional Weighted Residuals Analysis for Structural Model Assessment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Moustafa M. A. Ibrahim, Sebastian Ueckert, Svetlana Freiberga, Maria C. Kjellsson, Mats O. Karlsson

ABSTRACT

Nonlinear mixed effects models are widely used to describe longitudinal data to improve the efficiency of drug development process or increase the understanding of the studied disease. In such settings, the appropriateness of the modeling assumptions is critical in order to draw correct conclusions and must be carefully assessed for any substantial violations. Here, we propose a new method for structure model assessment, based on assessment of bias in conditional weighted residuals (CWRES). We illustrate this method by assessing prediction bias in two integrated models for glucose homeostasis, the integrated glucose-insulin (IGI) model, and the integrated minimal model (IMM). One dataset was simulated from each model then analyzed with the two models. CWRES outputted from each model fitting were modeled to capture systematic trends in CWRES as well as the magnitude of structural model misspecifications in terms of difference in objective function values (ΔOFVBias). The estimates of CWRES bias were used to calculate the corresponding bias in conditional predictions by the inversion of first-order conditional estimation method's covariance equation. Time, glucose, and insulin concentration predictions were the investigated independent variables. The new method identified correctly the bias in glucose sub-model of the integrated minimal model (IMM), when this bias occurred, and calculated the absolute and proportional magnitude of the resulting bias. CWRES bias versus the independent variables agreed well with the true trends of misspecification. This method is fast easily automated diagnostic tool for model development/evaluation process, and it is already implemented as part of the Perl-speaks-NONMEM software. More... »

PAGES

34

Journal

TITLE

The AAPS Journal

ISSUE

3

VOLUME

21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1208/s12248-019-0305-2

DOI

http://dx.doi.org/10.1208/s12248-019-0305-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112436206

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30815754


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helwan University", 
          "id": "https://www.grid.ac/institutes/grid.412093.d", 
          "name": [
            "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden", 
            "Department of Pharmacy Practice, Helwan University, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibrahim", 
        "givenName": "Moustafa M. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uppsala University", 
          "id": "https://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueckert", 
        "givenName": "Sebastian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uppsala University", 
          "id": "https://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freiberga", 
        "givenName": "Svetlana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uppsala University", 
          "id": "https://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kjellsson", 
        "givenName": "Maria C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uppsala University", 
          "id": "https://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karlsson", 
        "givenName": "Mats O.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1020561807903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000237393", 
          "https://doi.org/10.1023/a:1020561807903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2005.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006146346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psp4.12161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011206544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psp4.12161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011206544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0091270011422231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025749025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0091270007304457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028377625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011555016423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032175473", 
          "https://doi.org/10.1023/a:1011555016423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00473.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034131924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00473.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034131924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-010-9189-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038068526", 
          "https://doi.org/10.1007/s10928-010-9189-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-009-9123-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040901037", 
          "https://doi.org/10.1007/s10928-009-9123-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-009-9123-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040901037", 
          "https://doi.org/10.1007/s10928-009-9123-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.clpt.6100235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043146976", 
          "https://doi.org/10.1038/sj.clpt.6100235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2007.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048645146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-007-9361-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050287322", 
          "https://doi.org/10.1007/s11095-007-9361-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1999.277.3.e481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074520275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1986.250.5.e591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079797507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1979.236.6.e667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080342534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psp4.12302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103841553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-018-0240-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105269013", 
          "https://doi.org/10.1208/s12248-018-0240-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Nonlinear mixed effects models are widely used to describe longitudinal data to improve the efficiency of drug development process or increase the understanding of the studied disease. In such settings, the appropriateness of the modeling assumptions is critical in order to draw correct conclusions and must be carefully assessed for any substantial violations. Here, we propose a new method for structure model assessment, based on assessment of bias in conditional weighted residuals (CWRES). We illustrate this method by assessing prediction bias in two integrated models for glucose homeostasis, the integrated glucose-insulin (IGI) model, and the integrated minimal model (IMM). One dataset was simulated from each model then analyzed with the two models. CWRES outputted from each model fitting were modeled to capture systematic trends in CWRES as well as the magnitude of structural model misspecifications in terms of difference in objective function values (\u0394OFVBias). The estimates of CWRES bias were used to calculate the corresponding bias in conditional predictions by the inversion of first-order conditional estimation method's covariance equation. Time, glucose, and insulin concentration predictions were the investigated independent variables. The new method identified correctly the bias in glucose sub-model of the integrated minimal model (IMM), when this bias occurred, and calculated the absolute and proportional magnitude of the resulting bias. CWRES bias versus the independent variables agreed well with the true trends of misspecification. This method is fast easily automated diagnostic tool for model development/evaluation process, and it is already implemented as part of the Perl-speaks-NONMEM software.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1208/s12248-019-0305-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1021863", 
        "issn": [
          "1234-1234", 
          "1550-7416"
        ], 
        "name": "The AAPS Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Model-Based Conditional Weighted Residuals Analysis for Structural Model Assessment", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5aded3f36e43387128d4eaaa6d1e19ad95c1167a3aa79d2bd83eee5bb1cfc3d0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30815754"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101223209"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1208/s12248-019-0305-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112436206"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1208/s12248-019-0305-2", 
      "https://app.dimensions.ai/details/publication/pub.1112436206"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78968_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1208%2Fs12248-019-0305-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1208/s12248-019-0305-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1208/s12248-019-0305-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1208/s12248-019-0305-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1208/s12248-019-0305-2'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1208/s12248-019-0305-2 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author Nf5c6404ccffe47339f4580c1ecd119d4
4 schema:citation sg:pub.10.1007/s10928-009-9123-y
5 sg:pub.10.1007/s10928-010-9189-6
6 sg:pub.10.1007/s11095-007-9361-x
7 sg:pub.10.1023/a:1011555016423
8 sg:pub.10.1023/a:1020561807903
9 sg:pub.10.1038/sj.clpt.6100235
10 sg:pub.10.1208/s12248-018-0240-7
11 https://doi.org/10.1002/psp4.12161
12 https://doi.org/10.1002/psp4.12302
13 https://doi.org/10.1016/j.cmpb.2005.04.005
14 https://doi.org/10.1016/j.cmpb.2007.12.002
15 https://doi.org/10.1152/ajpendo.00473.2004
16 https://doi.org/10.1152/ajpendo.1979.236.6.e667
17 https://doi.org/10.1152/ajpendo.1986.250.5.e591
18 https://doi.org/10.1152/ajpendo.1999.277.3.e481
19 https://doi.org/10.1177/0091270007304457
20 https://doi.org/10.1177/0091270011422231
21 schema:datePublished 2019-05
22 schema:datePublishedReg 2019-05-01
23 schema:description Nonlinear mixed effects models are widely used to describe longitudinal data to improve the efficiency of drug development process or increase the understanding of the studied disease. In such settings, the appropriateness of the modeling assumptions is critical in order to draw correct conclusions and must be carefully assessed for any substantial violations. Here, we propose a new method for structure model assessment, based on assessment of bias in conditional weighted residuals (CWRES). We illustrate this method by assessing prediction bias in two integrated models for glucose homeostasis, the integrated glucose-insulin (IGI) model, and the integrated minimal model (IMM). One dataset was simulated from each model then analyzed with the two models. CWRES outputted from each model fitting were modeled to capture systematic trends in CWRES as well as the magnitude of structural model misspecifications in terms of difference in objective function values (ΔOFV<sub>Bias</sub>). The estimates of CWRES bias were used to calculate the corresponding bias in conditional predictions by the inversion of first-order conditional estimation method's covariance equation. Time, glucose, and insulin concentration predictions were the investigated independent variables. The new method identified correctly the bias in glucose sub-model of the integrated minimal model (IMM), when this bias occurred, and calculated the absolute and proportional magnitude of the resulting bias. CWRES bias versus the independent variables agreed well with the true trends of misspecification. This method is fast easily automated diagnostic tool for model development/evaluation process, and it is already implemented as part of the Perl-speaks-NONMEM software.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N1b4e089e739c430fae2cb0b642232c3a
28 N52f0e297f6ee47488ed1cb6522be16c4
29 sg:journal.1021863
30 schema:name Model-Based Conditional Weighted Residuals Analysis for Structural Model Assessment
31 schema:pagination 34
32 schema:productId N2c72280fa30a41f0b22144ce08ce2f17
33 N5cdfe8495c7d41a98583b50b1b76b94d
34 N7e0be4d0007244f39e65ecfaa44527fe
35 N8eb1823b08124c8bb24aabda827361e3
36 Nca6b2c2e249548c6ae8e51645123e886
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112436206
38 https://doi.org/10.1208/s12248-019-0305-2
39 schema:sdDatePublished 2019-04-11T13:20
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N455c50c5813c45a395e0b678bbdc5d61
42 schema:url https://link.springer.com/10.1208%2Fs12248-019-0305-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1b4e089e739c430fae2cb0b642232c3a schema:volumeNumber 21
47 rdf:type schema:PublicationVolume
48 N2c72280fa30a41f0b22144ce08ce2f17 schema:name doi
49 schema:value 10.1208/s12248-019-0305-2
50 rdf:type schema:PropertyValue
51 N3e5b9f958d2c4bc695152ad7d73027c5 schema:affiliation https://www.grid.ac/institutes/grid.412093.d
52 schema:familyName Ibrahim
53 schema:givenName Moustafa M. A.
54 rdf:type schema:Person
55 N42d6b7fe080f41928ebc4cfb9ea0f0fb schema:affiliation https://www.grid.ac/institutes/grid.8993.b
56 schema:familyName Kjellsson
57 schema:givenName Maria C.
58 rdf:type schema:Person
59 N455c50c5813c45a395e0b678bbdc5d61 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N52f0e297f6ee47488ed1cb6522be16c4 schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 N5cdfe8495c7d41a98583b50b1b76b94d schema:name dimensions_id
64 schema:value pub.1112436206
65 rdf:type schema:PropertyValue
66 N676edde88ce2478b90bd55ba031fbd10 rdf:first Nc20db16340d149dbba44d8fc5b81cc62
67 rdf:rest N7e0bfd49af9f4ae3bd0ed704d401fd94
68 N7e0be4d0007244f39e65ecfaa44527fe schema:name readcube_id
69 schema:value 5aded3f36e43387128d4eaaa6d1e19ad95c1167a3aa79d2bd83eee5bb1cfc3d0
70 rdf:type schema:PropertyValue
71 N7e0bfd49af9f4ae3bd0ed704d401fd94 rdf:first N9dcb02005c7947cdbaaef148d861289d
72 rdf:rest Ndb7040b5882e43049bce9cb722ed2936
73 N8eb1823b08124c8bb24aabda827361e3 schema:name nlm_unique_id
74 schema:value 101223209
75 rdf:type schema:PropertyValue
76 N9dcb02005c7947cdbaaef148d861289d schema:affiliation https://www.grid.ac/institutes/grid.8993.b
77 schema:familyName Freiberga
78 schema:givenName Svetlana
79 rdf:type schema:Person
80 Nc20db16340d149dbba44d8fc5b81cc62 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
81 schema:familyName Ueckert
82 schema:givenName Sebastian
83 rdf:type schema:Person
84 Nca6b2c2e249548c6ae8e51645123e886 schema:name pubmed_id
85 schema:value 30815754
86 rdf:type schema:PropertyValue
87 Ndb7040b5882e43049bce9cb722ed2936 rdf:first N42d6b7fe080f41928ebc4cfb9ea0f0fb
88 rdf:rest Ndfd1206eda7c46069e1ddc9ba56c092a
89 Ndfd1206eda7c46069e1ddc9ba56c092a rdf:first Nfd5e8920979d40f1be28b7ad301b7d3b
90 rdf:rest rdf:nil
91 Nf5c6404ccffe47339f4580c1ecd119d4 rdf:first N3e5b9f958d2c4bc695152ad7d73027c5
92 rdf:rest N676edde88ce2478b90bd55ba031fbd10
93 Nfd5e8920979d40f1be28b7ad301b7d3b schema:affiliation https://www.grid.ac/institutes/grid.8993.b
94 schema:familyName Karlsson
95 schema:givenName Mats O.
96 rdf:type schema:Person
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
101 schema:name Civil Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1021863 schema:issn 1234-1234
104 1550-7416
105 schema:name The AAPS Journal
106 rdf:type schema:Periodical
107 sg:pub.10.1007/s10928-009-9123-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040901037
108 https://doi.org/10.1007/s10928-009-9123-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10928-010-9189-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038068526
111 https://doi.org/10.1007/s10928-010-9189-6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11095-007-9361-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050287322
114 https://doi.org/10.1007/s11095-007-9361-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1011555016423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032175473
117 https://doi.org/10.1023/a:1011555016423
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1020561807903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000237393
120 https://doi.org/10.1023/a:1020561807903
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/sj.clpt.6100235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043146976
123 https://doi.org/10.1038/sj.clpt.6100235
124 rdf:type schema:CreativeWork
125 sg:pub.10.1208/s12248-018-0240-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105269013
126 https://doi.org/10.1208/s12248-018-0240-7
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/psp4.12161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011206544
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/psp4.12302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103841553
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cmpb.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006146346
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cmpb.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048645146
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1152/ajpendo.00473.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034131924
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1152/ajpendo.1979.236.6.e667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080342534
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1152/ajpendo.1986.250.5.e591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079797507
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1152/ajpendo.1999.277.3.e481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074520275
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1177/0091270007304457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028377625
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1177/0091270011422231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025749025
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.412093.d schema:alternateName Helwan University
149 schema:name Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
150 Department of Pharmacy Practice, Helwan University, Cairo, Egypt
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.8993.b schema:alternateName Uppsala University
153 schema:name Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...