Model-Based Residual Post-Processing for Residual Model Identification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Moustafa M. A. Ibrahim, Rikard Nordgren, Maria C. Kjellsson, Mats O. Karlsson

ABSTRACT

The purpose of this study was to investigate if model-based post-processing of common diagnostics can be used as a diagnostic tool to quantitatively identify model misspecifications and rectifying actions. The main investigated diagnostic is conditional weighted residuals (CWRES). We have selected to showcase this principle with residual unexplained variability (RUV) models, where the new diagnostic tool is used to scan extended RUV models and assess in a fast and robust way whether, and what, extensions are expected to provide a superior description of data. The extended RUV models evaluated were autocorrelated errors, dynamic transform both sides, inter-individual variability on RUV, power error model, t-distributed errors, and time-varying error magnitude. The agreement in improvement in goodness-of-fit between implementing these extended RUV models on the original model and implementing these extended RUV models on CWRES was evaluated in real and simulated data examples. Real data exercise was applied to three other diagnostics: conditional weighted residuals with interaction (CWRESI), individual weighted residuals (IWRES), and normalized prediction distribution errors (NPDE). CWRES modeling typically predicted (i) the nature of model misspecifications, (ii) the magnitude of the expected improvement in fit in terms of difference in objective function value (ΔOFV), and (iii) the parameter estimates associated with the model extension. Alternative metrics (CWRESI, IWRES, and NPDE) also provided valuable information, but with a lower predictive performance of ΔOFV compared to CWRES. This method is a fast and easily automated diagnostic tool for RUV model development/evaluation process; it is already implemented in the software package PsN. More... »

PAGES

81

References to SciGraph publications

  • 2009-02. The impact of misspecification of residual error or correlation structure on the type I error rate for covariate inclusion in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2008-08. Models for Plasma Glucose, HbA1c, and Hemoglobin Interrelationships in Patients with Type 2 Diabetes Following Tesaglitazar Treatment in CLINICAL PHARMACOLOGY & THERAPEUTICS
  • 1995-12. Three new residual error models for population PK/PD analyses in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2007-12. Conditional Weighted Residuals (CWRES): A Model Diagnostic for the FOCE Method in PHARMACEUTICAL RESEARCH
  • 2003-03. Intravenously administered digoxin in patients with acute atrial fibrillation: a population pharmacokinetic/pharmacodynamic analysis based on the Digitalis in Acute Atrial Fibrillation trial in EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY
  • 2009-07. Modeling and Simulation of the Time Course of Asenapine Exposure Response and Dropout Patterns in Acute Schizophrenia in CLINICAL PHARMACOLOGY & THERAPEUTICS
  • 2010-10. Population pharmacokinetics of lopinavir in combination with rifampicin-based antitubercular treatment in HIV-infected South African children in EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY
  • 1998-04. Assumption Testing in Population Pharmacokinetic Models: Illustrated with an Analysis of Moxonidine Data from Congestive Heart Failure Patients in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • 2005-08. Population Pharmacokinetic Modelling and Estimation of Dosing Strategy for NXY-059, a Nitrone Being Developed for Stroke in CLINICAL PHARMACOKINETICS
  • 2016-04. A strategy for residual error modeling incorporating scedasticity of variance and distribution shape in JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1208/s12248-018-0240-7

    DOI

    http://dx.doi.org/10.1208/s12248-018-0240-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105269013

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29968184


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Helwan University", 
              "id": "https://www.grid.ac/institutes/grid.412093.d", 
              "name": [
                "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden", 
                "Department of Pharmacy Practice, Helwan University, Cairo, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ibrahim", 
            "givenName": "Moustafa M. A.", 
            "id": "sg:person.010053656517.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010053656517.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Uppsala University", 
              "id": "https://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nordgren", 
            "givenName": "Rikard", 
            "id": "sg:person.014543740556.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543740556.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Uppsala University", 
              "id": "https://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kjellsson", 
            "givenName": "Maria C.", 
            "id": "sg:person.0704352273.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704352273.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Uppsala University", 
              "id": "https://www.grid.ac/institutes/grid.8993.b", 
              "name": [
                "Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karlsson", 
            "givenName": "Mats O.", 
            "id": "sg:person.013476764432.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013476764432.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1020561807903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000237393", 
              "https://doi.org/10.1023/a:1020561807903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/psp.2013.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001595293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aac.00274-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002301622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2005.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006146346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2125.1998.00644.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006390376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2125.1998.00644.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006390376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00228-010-0847-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007097310", 
              "https://doi.org/10.1007/s00228-010-0847-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00228-010-0847-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007097310", 
              "https://doi.org/10.1007/s00228-010-0847-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0091270010376977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008226507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00003088-200544080-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009584526", 
              "https://doi.org/10.2165/00003088-200544080-00007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00003088-200544080-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009584526", 
              "https://doi.org/10.2165/00003088-200544080-00007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aac.00014-08", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014236737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2008.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015307756", 
              "https://doi.org/10.1038/clpt.2008.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2125.2004.02170.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015538103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/psp.2013.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019549638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2009.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026248846", 
              "https://doi.org/10.1038/clpt.2009.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2009.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026248846", 
              "https://doi.org/10.1038/clpt.2009.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10543409308835047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028335802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00228-002-0553-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028362826", 
              "https://doi.org/10.1007/s00228-002-0553-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0091270007304457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028377625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02353466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028807185", 
              "https://doi.org/10.1007/bf02353466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-015-9460-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035205546", 
              "https://doi.org/10.1007/s10928-015-9460-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-015-9460-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035205546", 
              "https://doi.org/10.1007/s10928-015-9460-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2125.2010.03894.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039448916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.0306-5251.2003.01850.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042178358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jcph.602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045525323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10928-009-9112-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048327096", 
              "https://doi.org/10.1007/s10928-009-9112-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2007.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048645146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-007-9361-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050287322", 
              "https://doi.org/10.1007/s11095-007-9361-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1989.10478790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2002.02.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064202939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2685594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070058725"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "The purpose of this study was to investigate if model-based post-processing of common diagnostics can be used as a diagnostic tool to quantitatively identify model misspecifications and rectifying actions. The main investigated diagnostic is conditional weighted residuals (CWRES). We have selected to showcase this principle with residual unexplained variability (RUV) models, where the new diagnostic tool is used to scan extended RUV models and assess in a fast and robust way whether, and what, extensions are expected to provide a superior description of data. The extended RUV models evaluated were autocorrelated errors, dynamic transform both sides, inter-individual variability on RUV, power error model, t-distributed errors, and time-varying error magnitude. The agreement in improvement in goodness-of-fit between implementing these extended RUV models on the original model and implementing these extended RUV models on CWRES was evaluated in real and simulated data examples. Real data exercise was applied to three other diagnostics: conditional weighted residuals with interaction (CWRESI), individual weighted residuals (IWRES), and normalized prediction distribution errors (NPDE). CWRES modeling typically predicted (i) the nature of model misspecifications, (ii) the magnitude of the expected improvement in fit in terms of difference in objective function value (\u0394OFV), and (iii) the parameter estimates associated with the model extension. Alternative metrics (CWRESI, IWRES, and NPDE) also provided valuable information, but with a lower predictive performance of \u0394OFV compared to CWRES. This method is a fast and easily automated diagnostic tool for RUV model development/evaluation process; it is already implemented in the software package PsN.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1208/s12248-018-0240-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1021863", 
            "issn": [
              "1234-1234", 
              "1550-7416"
            ], 
            "name": "The AAPS Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "Model-Based Residual Post-Processing for Residual Model Identification", 
        "pagination": "81", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cedc0acc7b0098f4f62987775c5a5512b5da9e684a484c4764cd1fdf92721389"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29968184"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101223209"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1208/s12248-018-0240-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105269013"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1208/s12248-018-0240-7", 
          "https://app.dimensions.ai/details/publication/pub.1105269013"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000572.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1208%2Fs12248-018-0240-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1208/s12248-018-0240-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1208/s12248-018-0240-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1208/s12248-018-0240-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1208/s12248-018-0240-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1208/s12248-018-0240-7 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nea1aae47c9c34c43adcb004c4d9cf313
    4 schema:citation sg:pub.10.1007/bf02353466
    5 sg:pub.10.1007/s00228-002-0553-3
    6 sg:pub.10.1007/s00228-010-0847-9
    7 sg:pub.10.1007/s10928-009-9112-1
    8 sg:pub.10.1007/s10928-015-9460-y
    9 sg:pub.10.1007/s11095-007-9361-x
    10 sg:pub.10.1023/a:1020561807903
    11 sg:pub.10.1038/clpt.2008.2
    12 sg:pub.10.1038/clpt.2009.44
    13 sg:pub.10.2165/00003088-200544080-00007
    14 https://doi.org/10.1002/jcph.602
    15 https://doi.org/10.1016/j.cmpb.2005.04.005
    16 https://doi.org/10.1016/j.cmpb.2007.12.002
    17 https://doi.org/10.1038/psp.2013.14
    18 https://doi.org/10.1038/psp.2013.24
    19 https://doi.org/10.1046/j.0306-5251.2003.01850.x
    20 https://doi.org/10.1046/j.1365-2125.1998.00644.x
    21 https://doi.org/10.1080/01621459.1989.10478790
    22 https://doi.org/10.1080/10543409308835047
    23 https://doi.org/10.1111/j.1365-2125.2004.02170.x
    24 https://doi.org/10.1111/j.1365-2125.2010.03894.x
    25 https://doi.org/10.1128/aac.00014-08
    26 https://doi.org/10.1128/aac.00274-11
    27 https://doi.org/10.1177/0091270007304457
    28 https://doi.org/10.1177/0091270010376977
    29 https://doi.org/10.1200/jco.2002.02.140
    30 https://doi.org/10.2307/2685594
    31 schema:datePublished 2018-09
    32 schema:datePublishedReg 2018-09-01
    33 schema:description The purpose of this study was to investigate if model-based post-processing of common diagnostics can be used as a diagnostic tool to quantitatively identify model misspecifications and rectifying actions. The main investigated diagnostic is conditional weighted residuals (CWRES). We have selected to showcase this principle with residual unexplained variability (RUV) models, where the new diagnostic tool is used to scan extended RUV models and assess in a fast and robust way whether, and what, extensions are expected to provide a superior description of data. The extended RUV models evaluated were autocorrelated errors, dynamic transform both sides, inter-individual variability on RUV, power error model, t-distributed errors, and time-varying error magnitude. The agreement in improvement in goodness-of-fit between implementing these extended RUV models on the original model and implementing these extended RUV models on CWRES was evaluated in real and simulated data examples. Real data exercise was applied to three other diagnostics: conditional weighted residuals with interaction (CWRESI), individual weighted residuals (IWRES), and normalized prediction distribution errors (NPDE). CWRES modeling typically predicted (i) the nature of model misspecifications, (ii) the magnitude of the expected improvement in fit in terms of difference in objective function value (ΔOFV), and (iii) the parameter estimates associated with the model extension. Alternative metrics (CWRESI, IWRES, and NPDE) also provided valuable information, but with a lower predictive performance of ΔOFV compared to CWRES. This method is a fast and easily automated diagnostic tool for RUV model development/evaluation process; it is already implemented in the software package PsN.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N5914a61e072f434a82b7cc38ea4fd915
    38 Na149557f3f3b4c07bccd98981df6e816
    39 sg:journal.1021863
    40 schema:name Model-Based Residual Post-Processing for Residual Model Identification
    41 schema:pagination 81
    42 schema:productId N31ae7c8060074886a41519e6e5f270fa
    43 N5db891fe6dcf4f8d951ccfe2a9dc40ca
    44 Nb65fdb038cf04741bca6a1cf9bfb10e1
    45 Ndcfdb8af20fb4c389ee27f0e43a77e32
    46 Neea36c9279bb47d0b30a142cfe4f35d5
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105269013
    48 https://doi.org/10.1208/s12248-018-0240-7
    49 schema:sdDatePublished 2019-04-11T01:17
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N8db610c0b7ba43eaaae365df1364a88f
    52 schema:url https://link.springer.com/10.1208%2Fs12248-018-0240-7
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N31ae7c8060074886a41519e6e5f270fa schema:name nlm_unique_id
    57 schema:value 101223209
    58 rdf:type schema:PropertyValue
    59 N5914a61e072f434a82b7cc38ea4fd915 schema:issueNumber 5
    60 rdf:type schema:PublicationIssue
    61 N5db891fe6dcf4f8d951ccfe2a9dc40ca schema:name doi
    62 schema:value 10.1208/s12248-018-0240-7
    63 rdf:type schema:PropertyValue
    64 N8db610c0b7ba43eaaae365df1364a88f schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 Na149557f3f3b4c07bccd98981df6e816 schema:volumeNumber 20
    67 rdf:type schema:PublicationVolume
    68 Nb65fdb038cf04741bca6a1cf9bfb10e1 schema:name readcube_id
    69 schema:value cedc0acc7b0098f4f62987775c5a5512b5da9e684a484c4764cd1fdf92721389
    70 rdf:type schema:PropertyValue
    71 Ndb95369995a94fd7b145a8259e8feec5 rdf:first sg:person.013476764432.99
    72 rdf:rest rdf:nil
    73 Ndc156c9b985040d4aeff4003ad79a68e rdf:first sg:person.014543740556.81
    74 rdf:rest Ndd9bdf0e497b4612af4fc7d4abcefc99
    75 Ndcfdb8af20fb4c389ee27f0e43a77e32 schema:name dimensions_id
    76 schema:value pub.1105269013
    77 rdf:type schema:PropertyValue
    78 Ndd9bdf0e497b4612af4fc7d4abcefc99 rdf:first sg:person.0704352273.07
    79 rdf:rest Ndb95369995a94fd7b145a8259e8feec5
    80 Nea1aae47c9c34c43adcb004c4d9cf313 rdf:first sg:person.010053656517.07
    81 rdf:rest Ndc156c9b985040d4aeff4003ad79a68e
    82 Neea36c9279bb47d0b30a142cfe4f35d5 schema:name pubmed_id
    83 schema:value 29968184
    84 rdf:type schema:PropertyValue
    85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Information and Computing Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Information Systems
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1021863 schema:issn 1234-1234
    92 1550-7416
    93 schema:name The AAPS Journal
    94 rdf:type schema:Periodical
    95 sg:person.010053656517.07 schema:affiliation https://www.grid.ac/institutes/grid.412093.d
    96 schema:familyName Ibrahim
    97 schema:givenName Moustafa M. A.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010053656517.07
    99 rdf:type schema:Person
    100 sg:person.013476764432.99 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
    101 schema:familyName Karlsson
    102 schema:givenName Mats O.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013476764432.99
    104 rdf:type schema:Person
    105 sg:person.014543740556.81 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
    106 schema:familyName Nordgren
    107 schema:givenName Rikard
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543740556.81
    109 rdf:type schema:Person
    110 sg:person.0704352273.07 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
    111 schema:familyName Kjellsson
    112 schema:givenName Maria C.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704352273.07
    114 rdf:type schema:Person
    115 sg:pub.10.1007/bf02353466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028807185
    116 https://doi.org/10.1007/bf02353466
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00228-002-0553-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028362826
    119 https://doi.org/10.1007/s00228-002-0553-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00228-010-0847-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007097310
    122 https://doi.org/10.1007/s00228-010-0847-9
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s10928-009-9112-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048327096
    125 https://doi.org/10.1007/s10928-009-9112-1
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10928-015-9460-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035205546
    128 https://doi.org/10.1007/s10928-015-9460-y
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s11095-007-9361-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050287322
    131 https://doi.org/10.1007/s11095-007-9361-x
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1023/a:1020561807903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000237393
    134 https://doi.org/10.1023/a:1020561807903
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/clpt.2008.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015307756
    137 https://doi.org/10.1038/clpt.2008.2
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/clpt.2009.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026248846
    140 https://doi.org/10.1038/clpt.2009.44
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.2165/00003088-200544080-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009584526
    143 https://doi.org/10.2165/00003088-200544080-00007
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/jcph.602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045525323
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.cmpb.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006146346
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.cmpb.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048645146
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1038/psp.2013.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019549638
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1038/psp.2013.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001595293
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1046/j.0306-5251.2003.01850.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042178358
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1046/j.1365-2125.1998.00644.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006390376
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1080/01621459.1989.10478790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303767
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1080/10543409308835047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028335802
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1111/j.1365-2125.2004.02170.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015538103
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1111/j.1365-2125.2010.03894.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039448916
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1128/aac.00014-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014236737
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1128/aac.00274-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002301622
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1177/0091270007304457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028377625
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1177/0091270010376977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008226507
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1200/jco.2002.02.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064202939
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.2307/2685594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070058725
    178 rdf:type schema:CreativeWork
    179 https://www.grid.ac/institutes/grid.412093.d schema:alternateName Helwan University
    180 schema:name Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
    181 Department of Pharmacy Practice, Helwan University, Cairo, Egypt
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.8993.b schema:alternateName Uppsala University
    184 schema:name Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...