Neuro-fuzzy Models as an IVIVR Tool and Their Applicability in Generic Drug Development View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

Jerneja Opara, Igor Legen

ABSTRACT

The usefulness of neuro-fuzzy (NF) models as an alternative in vitro-in vivo relationship (IVIVR) tool and as a support to quality by design (QbD) in generic drug development is presented. For drugs with complicated pharmacokinetics, immediate release drugs or nasal sprays, suggested level A correlations are not capable to satisfactorily describe the IVIVR. NF systems were recognized as a reasonable method in comparison to the published approaches for development of IVIVR. Consequently, NF models were built to predict 144 pharmacokinetic (PK) parameter ratios required for demonstration of bioequivalence (BE) for 88 pivotal BE studies. Input parameters of models included dissolution data and their combinations in different media, presence of food, formulation strength, technology type, particle size, and spray pattern for nasal sprays. Ratios of PK parameters Cmax or AUC were used as output variables. The prediction performance of models resulted in the following values: 79% of models have acceptable external prediction error (PE) below 10%, 13% of models have inconclusive PE between 10 and 20%, and remaining 8% of models show inadequate PE above 20%. Average internal predictability (LE) is 0.3%, and average external predictability of all models results in 7.7%. In average, models have acceptable internal and external predictabilities with PE lower than 10% and are therefore useful for IVIVR needs during formulation development, as a support to QbD and for the prediction of BE study outcome. More... »

PAGES

324-334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1208/s12248-014-9569-8

DOI

http://dx.doi.org/10.1208/s12248-014-9569-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013197936

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24477942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drugs, Generic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fuzzy Logic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacokinetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novartis (Slovenia)", 
          "id": "https://www.grid.ac/institutes/grid.457257.6", 
          "name": [
            "Sandoz Development Center Slovenia, IVIVC Department, Lek Pharmaceuticals d.d., Verov\u0161kova 57, 1526, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Opara", 
        "givenName": "Jerneja", 
        "id": "sg:person.01115317545.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115317545.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novartis (Slovenia)", 
          "id": "https://www.grid.ac/institutes/grid.457257.6", 
          "name": [
            "Sandoz Development Center Slovenia, IVIVC Department, Lek Pharmaceuticals d.d., Verov\u0161kova 57, 1526, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Legen", 
        "givenName": "Igor", 
        "id": "sg:person.01227026603.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227026603.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1018857108713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007717772", 
          "https://doi.org/10.1023/a:1018857108713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0052850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011345672", 
          "https://doi.org/10.1007/bfb0052850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0052850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011345672", 
          "https://doi.org/10.1007/bfb0052850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-6036-0_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433912", 
          "https://doi.org/10.1007/978-1-4684-6036-0_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.23027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026367383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03639049509048099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031632520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-010-9206-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034923028", 
          "https://doi.org/10.1208/s12248-010-9206-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-3066-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035656081", 
          "https://doi.org/10.1007/978-1-4471-3066-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016212804288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037126380", 
          "https://doi.org/10.1023/a:1016212804288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-008-9010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044081665", 
          "https://doi.org/10.1208/s12248-008-9010-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-008-9010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044081665", 
          "https://doi.org/10.1208/s12248-008-9010-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0009-9236(97)90149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046413873", 
          "https://doi.org/10.1016/s0009-9236(97)90149-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/js970148p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051747541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3801(2003)17:2(123)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057609400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.736759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061085372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.364486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065795000159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082579352", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "The usefulness of neuro-fuzzy (NF) models as an alternative in vitro-in vivo relationship (IVIVR) tool and as a support to quality by design (QbD) in generic drug development is presented. For drugs with complicated pharmacokinetics, immediate release drugs or nasal sprays, suggested level A correlations are not capable to satisfactorily describe the IVIVR. NF systems were recognized as a reasonable method in comparison to the published approaches for development of IVIVR. Consequently, NF models were built to predict 144 pharmacokinetic (PK) parameter ratios required for demonstration of bioequivalence (BE) for 88 pivotal BE studies. Input parameters of models included dissolution data and their combinations in different media, presence of food, formulation strength, technology type, particle size, and spray pattern for nasal sprays. Ratios of PK parameters Cmax or AUC were used as output variables. The prediction performance of models resulted in the following values: 79% of models have acceptable external prediction error (PE) below 10%, 13% of models have inconclusive PE between 10 and 20%, and remaining 8% of models show inadequate PE above 20%. Average internal predictability (LE) is 0.3%, and average external predictability of all models results in 7.7%. In average, models have acceptable internal and external predictabilities with PE lower than 10% and are therefore useful for IVIVR needs during formulation development, as a support to QbD and for the prediction of BE study outcome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1208/s12248-014-9569-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1021863", 
        "issn": [
          "1234-1234", 
          "1550-7416"
        ], 
        "name": "The AAPS Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Neuro-fuzzy Models as an IVIVR Tool and Their Applicability in Generic Drug Development", 
    "pagination": "324-334", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3edf29f42c3a1b015dff1a807f3b5db245dd295979e7074bedac5b36d6972452"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24477942"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101223209"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1208/s12248-014-9569-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013197936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1208/s12248-014-9569-8", 
      "https://app.dimensions.ai/details/publication/pub.1013197936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1208/s12248-014-9569-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1208/s12248-014-9569-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1208/s12248-014-9569-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1208/s12248-014-9569-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1208/s12248-014-9569-8'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      51 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1208/s12248-014-9569-8 schema:about N03d786dedb1149d19cbddc4b62a177bb
2 N2c2dce3df5af4a9683180ad6c31aa6d6
3 N71dbc556aef342c98d8019f475711993
4 N9492fe5fdfde4773a455b02995d96ea3
5 Na1de54f8e57640cab26842043469fc54
6 Nf2137090572946c690facf01b00ea829
7 anzsrc-for:09
8 anzsrc-for:0907
9 schema:author Nd40c0b73ce7f42da9891d4459518668f
10 schema:citation sg:pub.10.1007/978-1-4471-3066-6_5
11 sg:pub.10.1007/978-1-4684-6036-0_25
12 sg:pub.10.1007/bfb0052850
13 sg:pub.10.1016/s0009-9236(97)90149-1
14 sg:pub.10.1023/a:1016212804288
15 sg:pub.10.1023/a:1018857108713
16 sg:pub.10.1208/s12248-008-9010-2
17 sg:pub.10.1208/s12248-010-9206-0
18 https://app.dimensions.ai/details/publication/pub.1082579352
19 https://doi.org/10.1002/jps.23027
20 https://doi.org/10.1021/js970148p
21 https://doi.org/10.1061/(asce)0887-3801(2003)17:2(123)
22 https://doi.org/10.1109/10.736759
23 https://doi.org/10.1109/5.364486
24 https://doi.org/10.1142/s0129065795000159
25 https://doi.org/10.3109/03639049509048099
26 schema:datePublished 2014-03
27 schema:datePublishedReg 2014-03-01
28 schema:description The usefulness of neuro-fuzzy (NF) models as an alternative in vitro-in vivo relationship (IVIVR) tool and as a support to quality by design (QbD) in generic drug development is presented. For drugs with complicated pharmacokinetics, immediate release drugs or nasal sprays, suggested level A correlations are not capable to satisfactorily describe the IVIVR. NF systems were recognized as a reasonable method in comparison to the published approaches for development of IVIVR. Consequently, NF models were built to predict 144 pharmacokinetic (PK) parameter ratios required for demonstration of bioequivalence (BE) for 88 pivotal BE studies. Input parameters of models included dissolution data and their combinations in different media, presence of food, formulation strength, technology type, particle size, and spray pattern for nasal sprays. Ratios of PK parameters Cmax or AUC were used as output variables. The prediction performance of models resulted in the following values: 79% of models have acceptable external prediction error (PE) below 10%, 13% of models have inconclusive PE between 10 and 20%, and remaining 8% of models show inadequate PE above 20%. Average internal predictability (LE) is 0.3%, and average external predictability of all models results in 7.7%. In average, models have acceptable internal and external predictabilities with PE lower than 10% and are therefore useful for IVIVR needs during formulation development, as a support to QbD and for the prediction of BE study outcome.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N301c70225ef34925bd07779c1f1013d0
33 N6fe9cbe5a2d845c5bf8d3c6eafc5ede3
34 sg:journal.1021863
35 schema:name Neuro-fuzzy Models as an IVIVR Tool and Their Applicability in Generic Drug Development
36 schema:pagination 324-334
37 schema:productId N633498322b7b44d098d592e014b5278d
38 N84167e9dafc444c8be2328b657e41836
39 N879d6682c6ec4d3dbb5fe0b16a39394f
40 Nb3240ff3b8bb4f33a738a90f3ccaf27c
41 Nc08d807488064830a043d98182e8b75f
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013197936
43 https://doi.org/10.1208/s12248-014-9569-8
44 schema:sdDatePublished 2019-04-10T15:48
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N1a4759637313413882074f07abcf920b
47 schema:url http://link.springer.com/10.1208/s12248-014-9569-8
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N03d786dedb1149d19cbddc4b62a177bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Area Under Curve
53 rdf:type schema:DefinedTerm
54 N1a4759637313413882074f07abcf920b schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N2c2dce3df5af4a9683180ad6c31aa6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Models, Theoretical
58 rdf:type schema:DefinedTerm
59 N301c70225ef34925bd07779c1f1013d0 schema:volumeNumber 16
60 rdf:type schema:PublicationVolume
61 N4fd8a79802514a24a18f00521ac1732e rdf:first sg:person.01227026603.73
62 rdf:rest rdf:nil
63 N633498322b7b44d098d592e014b5278d schema:name dimensions_id
64 schema:value pub.1013197936
65 rdf:type schema:PropertyValue
66 N6fe9cbe5a2d845c5bf8d3c6eafc5ede3 schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N71dbc556aef342c98d8019f475711993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Fuzzy Logic
70 rdf:type schema:DefinedTerm
71 N84167e9dafc444c8be2328b657e41836 schema:name readcube_id
72 schema:value 3edf29f42c3a1b015dff1a807f3b5db245dd295979e7074bedac5b36d6972452
73 rdf:type schema:PropertyValue
74 N879d6682c6ec4d3dbb5fe0b16a39394f schema:name nlm_unique_id
75 schema:value 101223209
76 rdf:type schema:PropertyValue
77 N9492fe5fdfde4773a455b02995d96ea3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Drug Design
79 rdf:type schema:DefinedTerm
80 Na1de54f8e57640cab26842043469fc54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Pharmacokinetics
82 rdf:type schema:DefinedTerm
83 Nb3240ff3b8bb4f33a738a90f3ccaf27c schema:name pubmed_id
84 schema:value 24477942
85 rdf:type schema:PropertyValue
86 Nc08d807488064830a043d98182e8b75f schema:name doi
87 schema:value 10.1208/s12248-014-9569-8
88 rdf:type schema:PropertyValue
89 Nd40c0b73ce7f42da9891d4459518668f rdf:first sg:person.01115317545.97
90 rdf:rest N4fd8a79802514a24a18f00521ac1732e
91 Nf2137090572946c690facf01b00ea829 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Drugs, Generic
93 rdf:type schema:DefinedTerm
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
98 schema:name Environmental Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1021863 schema:issn 1234-1234
101 1550-7416
102 schema:name The AAPS Journal
103 rdf:type schema:Periodical
104 sg:person.01115317545.97 schema:affiliation https://www.grid.ac/institutes/grid.457257.6
105 schema:familyName Opara
106 schema:givenName Jerneja
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115317545.97
108 rdf:type schema:Person
109 sg:person.01227026603.73 schema:affiliation https://www.grid.ac/institutes/grid.457257.6
110 schema:familyName Legen
111 schema:givenName Igor
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227026603.73
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4471-3066-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035656081
115 https://doi.org/10.1007/978-1-4471-3066-6_5
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-1-4684-6036-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433912
118 https://doi.org/10.1007/978-1-4684-6036-0_25
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bfb0052850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011345672
121 https://doi.org/10.1007/bfb0052850
122 rdf:type schema:CreativeWork
123 sg:pub.10.1016/s0009-9236(97)90149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046413873
124 https://doi.org/10.1016/s0009-9236(97)90149-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1016212804288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037126380
127 https://doi.org/10.1023/a:1016212804288
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1018857108713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007717772
130 https://doi.org/10.1023/a:1018857108713
131 rdf:type schema:CreativeWork
132 sg:pub.10.1208/s12248-008-9010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044081665
133 https://doi.org/10.1208/s12248-008-9010-2
134 rdf:type schema:CreativeWork
135 sg:pub.10.1208/s12248-010-9206-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923028
136 https://doi.org/10.1208/s12248-010-9206-0
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1082579352 schema:CreativeWork
139 https://doi.org/10.1002/jps.23027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026367383
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/js970148p schema:sameAs https://app.dimensions.ai/details/publication/pub.1051747541
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1061/(asce)0887-3801(2003)17:2(123) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057609400
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/10.736759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085372
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/5.364486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179336
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1142/s0129065795000159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899774
150 rdf:type schema:CreativeWork
151 https://doi.org/10.3109/03639049509048099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031632520
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.457257.6 schema:alternateName Novartis (Slovenia)
154 schema:name Sandoz Development Center Slovenia, IVIVC Department, Lek Pharmaceuticals d.d., Verovškova 57, 1526, Ljubljana, Slovenia
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...