Generalization of a prototype intelligent hybrid system for hard gelatin capsule formulation development View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-09

AUTHORS

Wendy I. Wilson, Yun Peng, Larry L. Augsburger

ABSTRACT

The aim of this project was to expand a previously developed prototype expert network for use in the analysis of multiple biopharmaceutics classification system (BCS) class II drugs. The model drugs used were carbamazepine, chlorpropamide, diazepam, ibuprofen, ketoprofen, naproxen, and piroxicam. Recommended formulations were manufactured and tested for dissolution performance. A comprehensive training data set for the model drugs was developed and used to retrain the artificial neural network. The training and the system were validated based on the comparison of predicted and observed performance of the recommended formulations. The initial test of the system resulted in high error values, indicating poor prediction capabilities for drugs other than piroxicam. A new data set, containing 182 batches, was used for retraining. The percent of the test batches were used for cross-validation, resulting in models with R2≥70%. The comparison of observed performance to the predicted performance found that the system predicted succcessfully. The hybrid network was generally able to predict the amount of drug dissolved within 5% for the model drugs. Through validation, the system was proven to be capable of designing formulations that met specific drug performance criteria. By including parameters to address wettability and the intrinsic dissolution characteristics of the drugs, the hybrid system was shown to be suitable for analysis of multiple BCS class II drugs. More... »

PAGES

e449-e457

Identifiers

URI

http://scigraph.springernature.com/pub.10.1208/pt060356

DOI

http://dx.doi.org/10.1208/pt060356

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034895274

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16354004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Capsules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gelatin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technology, Pharmaceutical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Pharmaceutical Sciences, University of Maryland-Baltimore, 21201, Baltimore, MD", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Maryland-Baltimore, 21201, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "Wendy I.", 
        "id": "sg:person.01065516667.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065516667.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 21250, Maltiomre, MD", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 21250, Maltiomre, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Yun", 
        "id": "sg:person.01136741416.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmaceutical Sciences, University of Maryland-Baltimore, 21201, Baltimore, MD", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Department of Pharmaceutical Sciences, University of Maryland-Baltimore, 21201, Baltimore, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Augsburger", 
        "givenName": "Larry L.", 
        "id": "sg:person.01153104621.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153104621.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1015843527138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002628904", 
          "https://doi.org/10.1023/a:1015843527138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/pt040226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018669844", 
          "https://doi.org/10.1208/pt040226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016212804288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037126380", 
          "https://doi.org/10.1023/a:1016212804288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007578321803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000308030", 
          "https://doi.org/10.1023/a:1007578321803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011986823850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007767460", 
          "https://doi.org/10.1023/a:1011986823850"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "The aim of this project was to expand a previously developed prototype expert network for use in the analysis of multiple biopharmaceutics classification system (BCS) class II drugs. The model drugs used were carbamazepine, chlorpropamide, diazepam, ibuprofen, ketoprofen, naproxen, and piroxicam. Recommended formulations were manufactured and tested for dissolution performance. A comprehensive training data set for the model drugs was developed and used to retrain the artificial neural network. The training and the system were validated based on the comparison of predicted and observed performance of the recommended formulations. The initial test of the system resulted in high error values, indicating poor prediction capabilities for drugs other than piroxicam. A new data set, containing 182 batches, was used for retraining. The percent of the test batches were used for cross-validation, resulting in models with R2\u226570%. The comparison of observed performance to the predicted performance found that the system predicted succcessfully. The hybrid network was generally able to predict the amount of drug dissolved within 5% for the model drugs. Through validation, the system was proven to be capable of designing formulations that met specific drug performance criteria. By including parameters to address wettability and the intrinsic dissolution characteristics of the drugs, the hybrid system was shown to be suitable for analysis of multiple BCS class II drugs.", 
    "genre": "article", 
    "id": "sg:pub.10.1208/pt060356", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1023420", 
        "issn": [
          "1530-9932", 
          "1530-9932"
        ], 
        "name": "AAPS PharmSciTech", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "intelligent hybrid system", 
      "comprehensive training data", 
      "artificial neural network", 
      "poor prediction capability", 
      "training data", 
      "neural network", 
      "high error values", 
      "expert networks", 
      "hybrid network", 
      "hybrid system", 
      "new data set", 
      "data sets", 
      "network", 
      "prediction capability", 
      "observed performance", 
      "error values", 
      "performance criteria", 
      "performance", 
      "system", 
      "capability", 
      "set", 
      "test batches", 
      "project", 
      "initial test", 
      "training", 
      "validation", 
      "generalization", 
      "model", 
      "data", 
      "formulation", 
      "batch", 
      "use", 
      "analysis", 
      "comparison", 
      "amount", 
      "development", 
      "parameters", 
      "criteria", 
      "characteristics", 
      "values", 
      "aim", 
      "test", 
      "percent", 
      "formulation development", 
      "BCS class II drug", 
      "model drug", 
      "dissolution performance", 
      "class II drug", 
      "Biopharmaceutics Classification System class II drug", 
      "dissolution characteristics", 
      "wettability", 
      "amount of drug", 
      "drugs", 
      "ibuprofen", 
      "ketoprofen", 
      "naproxen", 
      "carbamazepine", 
      "piroxicam", 
      "chlorpropamide", 
      "diazepam"
    ], 
    "name": "Generalization of a prototype intelligent hybrid system for hard gelatin capsule formulation development", 
    "pagination": "e449-e457", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034895274"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1208/pt060356"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16354004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1208/pt060356", 
      "https://app.dimensions.ai/details/publication/pub.1034895274"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_411.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1208/pt060356"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1208/pt060356'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1208/pt060356'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1208/pt060356'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1208/pt060356'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      22 PREDICATES      98 URIs      85 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1208/pt060356 schema:about N4c9a93de3fc04813be8fb79d171b9611
2 N89f624f02df64d38aaeaeacbd27297d4
3 Nb88f18b7483b4810915da113028495de
4 Ne4547bd836324466ad9dbd734ae97e6f
5 Nf606c44acc05403ca1919eedec5fe99d
6 Nfb6f9a5673af45698cda174afb9b8705
7 anzsrc-for:11
8 anzsrc-for:1115
9 schema:author Na4e23672dfad49e3a82d04ca7005b290
10 schema:citation sg:pub.10.1023/a:1007578321803
11 sg:pub.10.1023/a:1011986823850
12 sg:pub.10.1023/a:1015843527138
13 sg:pub.10.1023/a:1016212804288
14 sg:pub.10.1208/pt040226
15 schema:datePublished 2005-09
16 schema:datePublishedReg 2005-09-01
17 schema:description The aim of this project was to expand a previously developed prototype expert network for use in the analysis of multiple biopharmaceutics classification system (BCS) class II drugs. The model drugs used were carbamazepine, chlorpropamide, diazepam, ibuprofen, ketoprofen, naproxen, and piroxicam. Recommended formulations were manufactured and tested for dissolution performance. A comprehensive training data set for the model drugs was developed and used to retrain the artificial neural network. The training and the system were validated based on the comparison of predicted and observed performance of the recommended formulations. The initial test of the system resulted in high error values, indicating poor prediction capabilities for drugs other than piroxicam. A new data set, containing 182 batches, was used for retraining. The percent of the test batches were used for cross-validation, resulting in models with R2≥70%. The comparison of observed performance to the predicted performance found that the system predicted succcessfully. The hybrid network was generally able to predict the amount of drug dissolved within 5% for the model drugs. Through validation, the system was proven to be capable of designing formulations that met specific drug performance criteria. By including parameters to address wettability and the intrinsic dissolution characteristics of the drugs, the hybrid system was shown to be suitable for analysis of multiple BCS class II drugs.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N752df47b64de426996652a174d00f870
22 Ndf565ebfaac64956b6f02eed4dc78c18
23 sg:journal.1023420
24 schema:keywords BCS class II drug
25 Biopharmaceutics Classification System class II drug
26 aim
27 amount
28 amount of drug
29 analysis
30 artificial neural network
31 batch
32 capability
33 carbamazepine
34 characteristics
35 chlorpropamide
36 class II drug
37 comparison
38 comprehensive training data
39 criteria
40 data
41 data sets
42 development
43 diazepam
44 dissolution characteristics
45 dissolution performance
46 drugs
47 error values
48 expert networks
49 formulation
50 formulation development
51 generalization
52 high error values
53 hybrid network
54 hybrid system
55 ibuprofen
56 initial test
57 intelligent hybrid system
58 ketoprofen
59 model
60 model drug
61 naproxen
62 network
63 neural network
64 new data set
65 observed performance
66 parameters
67 percent
68 performance
69 performance criteria
70 piroxicam
71 poor prediction capability
72 prediction capability
73 project
74 set
75 system
76 test
77 test batches
78 training
79 training data
80 use
81 validation
82 values
83 wettability
84 schema:name Generalization of a prototype intelligent hybrid system for hard gelatin capsule formulation development
85 schema:pagination e449-e457
86 schema:productId N061c60dfd5aa4f128e9d21ec9a893d6e
87 Nd3919359536e40558d37c16c821c36ab
88 Nd427ebc5e63f44f5a8114ffd9a2fee60
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034895274
90 https://doi.org/10.1208/pt060356
91 schema:sdDatePublished 2022-06-01T22:06
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N1a3adbacb7394f579d0c886a96be9f85
94 schema:url https://doi.org/10.1208/pt060356
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N061c60dfd5aa4f128e9d21ec9a893d6e schema:name pubmed_id
99 schema:value 16354004
100 rdf:type schema:PropertyValue
101 N1a3adbacb7394f579d0c886a96be9f85 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N4c9a93de3fc04813be8fb79d171b9611 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Reproducibility of Results
105 rdf:type schema:DefinedTerm
106 N752df47b64de426996652a174d00f870 schema:issueNumber 3
107 rdf:type schema:PublicationIssue
108 N89f624f02df64d38aaeaeacbd27297d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Technology, Pharmaceutical
110 rdf:type schema:DefinedTerm
111 Na4e23672dfad49e3a82d04ca7005b290 rdf:first sg:person.01065516667.62
112 rdf:rest Nf9b7d3b06ab14b02922e737dd08565a7
113 Nb88f18b7483b4810915da113028495de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Artificial Intelligence
115 rdf:type schema:DefinedTerm
116 Nc8296a7a72b944b0b2ee03c62f53a54a rdf:first sg:person.01153104621.46
117 rdf:rest rdf:nil
118 Nd3919359536e40558d37c16c821c36ab schema:name dimensions_id
119 schema:value pub.1034895274
120 rdf:type schema:PropertyValue
121 Nd427ebc5e63f44f5a8114ffd9a2fee60 schema:name doi
122 schema:value 10.1208/pt060356
123 rdf:type schema:PropertyValue
124 Ndf565ebfaac64956b6f02eed4dc78c18 schema:volumeNumber 6
125 rdf:type schema:PublicationVolume
126 Ne4547bd836324466ad9dbd734ae97e6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Chemistry, Pharmaceutical
128 rdf:type schema:DefinedTerm
129 Nf606c44acc05403ca1919eedec5fe99d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Gelatin
131 rdf:type schema:DefinedTerm
132 Nf9b7d3b06ab14b02922e737dd08565a7 rdf:first sg:person.01136741416.72
133 rdf:rest Nc8296a7a72b944b0b2ee03c62f53a54a
134 Nfb6f9a5673af45698cda174afb9b8705 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Capsules
136 rdf:type schema:DefinedTerm
137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
138 schema:name Medical and Health Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
141 schema:name Pharmacology and Pharmaceutical Sciences
142 rdf:type schema:DefinedTerm
143 sg:journal.1023420 schema:issn 1530-9932
144 schema:name AAPS PharmSciTech
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01065516667.62 schema:affiliation grid-institutes:grid.411024.2
148 schema:familyName Wilson
149 schema:givenName Wendy I.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065516667.62
151 rdf:type schema:Person
152 sg:person.01136741416.72 schema:affiliation grid-institutes:grid.266673.0
153 schema:familyName Peng
154 schema:givenName Yun
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72
156 rdf:type schema:Person
157 sg:person.01153104621.46 schema:affiliation grid-institutes:grid.411024.2
158 schema:familyName Augsburger
159 schema:givenName Larry L.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153104621.46
161 rdf:type schema:Person
162 sg:pub.10.1023/a:1007578321803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000308030
163 https://doi.org/10.1023/a:1007578321803
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/a:1011986823850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007767460
166 https://doi.org/10.1023/a:1011986823850
167 rdf:type schema:CreativeWork
168 sg:pub.10.1023/a:1015843527138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002628904
169 https://doi.org/10.1023/a:1015843527138
170 rdf:type schema:CreativeWork
171 sg:pub.10.1023/a:1016212804288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037126380
172 https://doi.org/10.1023/a:1016212804288
173 rdf:type schema:CreativeWork
174 sg:pub.10.1208/pt040226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018669844
175 https://doi.org/10.1208/pt040226
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.266673.0 schema:alternateName Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 21250, Maltiomre, MD
178 schema:name Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 21250, Maltiomre, MD
179 rdf:type schema:Organization
180 grid-institutes:grid.411024.2 schema:alternateName Department of Pharmaceutical Sciences, University of Maryland-Baltimore, 21201, Baltimore, MD
181 schema:name Department of Pharmaceutical Sciences, University of Maryland-Baltimore, 21201, Baltimore, MD
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...