Injectable Dexamethasone Administration Enhances Cortical GABAergic Neuronal Differentiation in a Novel Model of Postnatal Steroid Therapy in Mice View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-11-19

AUTHORS

OLIVIER BAUD, CATHERINE VERNEY, PHILIPPE EVRARD, PIERRE GRESSENS

ABSTRACT

Injectable dexamethasone (DXM) is widely used during the postnatal period in premature infants. However, this treatment has been associated with an increased incidence of neuromotor disorders. Few studies have directly addressed the impact of DXM therapy on neuronal differentiation. We used a murine model of postnatal steroid therapy in which mouse pups aged 3 and 4 postnatal days (P) received intraperitoneal injections of 1 mg . kg(-1) . 12 h(-1) of an injectable preparation that contained DXM and sulfites (DXM), pure DXM, or sulfites. The animals were weighed before they were killed on P5, P10, or P21, and their brains were investigated by immunohistochemistry with markers for neuronal differentiation. DXM administration was associated with a 20-30% reduction in body and brain weight gains and in cortical thickness on P5 and P10. gamma-Amino-butyric acid+ (GABA+) interneuron density was significantly increased (+50%) in the cerebral cortex of the animals given injectable DXM on P5 to P21 compared with controls (p < 0.01). In parallel, the density of cortical neurons expressing two interneuron markers (calbindin 28-kD and calretinin) increased significantly. These alterations occurred with injectable DXM but not with pure DXM or sulfites alone. In contrast, none of the study treatments modified the expression of other markers for neuronal transmission or axon myelination. In the animals that were given injectable DXM, cleaved caspase 3 antibody showed increased neuronal cell death, but calbindin antibody did not. In conclusion, in a murine model of postnatal steroid therapy, injectable DXM induced a selective increase in GABAergic neurons in the cerebral cortex. More... »

PAGES

149-156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1203/01.pdr.0000148069.03855.c4

DOI

http://dx.doi.org/10.1203/01.pdr.0000148069.03855.c4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023166215

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15557103


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dexamethasone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucocorticoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Injections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Steroids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "gamma-Aminobutyric Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BAUD", 
        "givenName": "OLIVIER", 
        "id": "sg:person.0640535361.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640535361.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "VERNEY", 
        "givenName": "CATHERINE", 
        "id": "sg:person.01272430242.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272430242.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "EVRARD", 
        "givenName": "PHILIPPE", 
        "id": "sg:person.01003303231.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003303231.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Laboratoire de Neurobiologie du D\u00e9veloppement &lsqb;O.B., C.V., P.E., P.G.&rsqb;, INSERM E9935, Paris, France; and Service de N\u00e9onatologie &lsqb;O.B.&rsqb; and Service de Neurologie &lsqb;P.E., P.G.&rsqb;, H\u00f4pital Robert Debr\u00e9, F-75019 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "GRESSENS", 
        "givenName": "PIERRE", 
        "id": "sg:person.0643134421.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643134421.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1203/00006450-200111000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010590793", 
          "https://doi.org/10.1203/00006450-200111000-00008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2431-1-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025991156", 
          "https://doi.org/10.1186/1471-2431-1-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1203/00006450-200112000-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019813658", 
          "https://doi.org/10.1203/00006450-200112000-00013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11-19", 
    "datePublishedReg": "2004-11-19", 
    "description": "Injectable dexamethasone (DXM) is widely used during the postnatal period in premature infants. However, this treatment has been associated with an increased incidence of neuromotor disorders. Few studies have directly addressed the impact of DXM therapy on neuronal differentiation. We used a murine model of postnatal steroid therapy in which mouse pups aged 3 and 4 postnatal days (P) received intraperitoneal injections of 1 mg . kg(-1) . 12 h(-1) of an injectable preparation that contained DXM and sulfites (DXM), pure DXM, or sulfites. The animals were weighed before they were killed on P5, P10, or P21, and their brains were investigated by immunohistochemistry with markers for neuronal differentiation. DXM administration was associated with a 20-30% reduction in body and brain weight gains and in cortical thickness on P5 and P10. gamma-Amino-butyric acid+ (GABA+) interneuron density was significantly increased (+50%) in the cerebral cortex of the animals given injectable DXM on P5 to P21 compared with controls (p < 0.01). In parallel, the density of cortical neurons expressing two interneuron markers (calbindin 28-kD and calretinin) increased significantly. These alterations occurred with injectable DXM but not with pure DXM or sulfites alone. In contrast, none of the study treatments modified the expression of other markers for neuronal transmission or axon myelination. In the animals that were given injectable DXM, cleaved caspase 3 antibody showed increased neuronal cell death, but calbindin antibody did not. In conclusion, in a murine model of postnatal steroid therapy, injectable DXM induced a selective increase in GABAergic neurons in the cerebral cortex.", 
    "genre": "article", 
    "id": "sg:pub.10.1203/01.pdr.0000148069.03855.c4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1007352", 
        "issn": [
          "0031-3998", 
          "1530-0447"
        ], 
        "name": "Pediatric Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "postnatal steroid therapy", 
      "injectable dexamethasone", 
      "steroid therapy", 
      "cerebral cortex", 
      "murine model", 
      "neuronal differentiation", 
      "pure dexamethasone", 
      "brain weight gain", 
      "gamma-Amino", 
      "neuronal cell death", 
      "GABAergic neuronal differentiation", 
      "caspase 3 antibody", 
      "DXM therapy", 
      "interneuron density", 
      "premature infants", 
      "study treatment", 
      "GABAergic neurons", 
      "dexamethasone administration", 
      "DXM administration", 
      "interneuron markers", 
      "calbindin antibody", 
      "intraperitoneal injection", 
      "postnatal day", 
      "cortical neurons", 
      "cortical thickness", 
      "postnatal period", 
      "mouse pups", 
      "neuronal transmission", 
      "dexamethasone", 
      "neuromotor disorders", 
      "therapy", 
      "weight gain", 
      "selective increase", 
      "injectable preparations", 
      "cortex", 
      "administration", 
      "neurons", 
      "cell death", 
      "markers", 
      "antibodies", 
      "animals", 
      "treatment", 
      "P10", 
      "p21", 
      "differentiation", 
      "infants", 
      "immunohistochemistry", 
      "incidence", 
      "pups", 
      "mice", 
      "myelination", 
      "brain", 
      "disorders", 
      "death", 
      "injection", 
      "P5", 
      "alterations", 
      "days", 
      "conclusion", 
      "expression", 
      "period", 
      "control", 
      "novel model", 
      "study", 
      "increase", 
      "contrast", 
      "reduction", 
      "body", 
      "transmission", 
      "impact", 
      "model", 
      "gain", 
      "preparation", 
      "butyric", 
      "parallel", 
      "density", 
      "thickness", 
      "sulfite", 
      "Injectable Dexamethasone Administration", 
      "Cortical GABAergic Neuronal Differentiation"
    ], 
    "name": "Injectable Dexamethasone Administration Enhances Cortical GABAergic Neuronal Differentiation in a Novel Model of Postnatal Steroid Therapy in Mice", 
    "pagination": "149-156", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023166215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1203/01.pdr.0000148069.03855.c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15557103"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1203/01.pdr.0000148069.03855.c4", 
      "https://app.dimensions.ai/details/publication/pub.1023166215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_393.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1203/01.pdr.0000148069.03855.c4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1203/01.pdr.0000148069.03855.c4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1203/01.pdr.0000148069.03855.c4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1203/01.pdr.0000148069.03855.c4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1203/01.pdr.0000148069.03855.c4'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      22 PREDICATES      128 URIs      117 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1203/01.pdr.0000148069.03855.c4 schema:about N02bdb90fd67b4403ac6569da2416cd17
2 N157cca05967b4dff830d361ba5ef7954
3 N16b60c39407842ab952f54af19ef2b01
4 N27682ba796e04c2e95c5f5be176ffce9
5 N279de57223fc4d0692917eae6ef11129
6 N3b66d19bf4a945a5b01f7c337714e11b
7 N42ae9a6e70674e16a584c6477c20996c
8 N492fcfeee0204accac9f462854ae7564
9 N517e27313dca4d65bc369557bfff35f7
10 N536a843b23e44df2b1415cf67fc6ae6e
11 N72b936ab0ba44af794a5362433ff2a2c
12 N8cca9cf5ae8b44e3b8c96b7b3257293f
13 N96e88182d48d4b36acba725677c6e016
14 Na879a87ac3e6416585fe62d1f805d1e9
15 Ncc4958c5f30546b2b0e8398b26b7a41b
16 Ne4184b8add644dac83243a5e85b639b7
17 Nec8d7da2d60f4fc0b375d5b8304ef299
18 Ned943ca43ce6438ca2de6cbd35db6ea0
19 Nededcab0f99c429b8460555f118778c3
20 anzsrc-for:11
21 anzsrc-for:1109
22 schema:author N24907988d8c644deb0e0b1744acb9fe6
23 schema:citation sg:pub.10.1186/1471-2431-1-1
24 sg:pub.10.1203/00006450-200111000-00008
25 sg:pub.10.1203/00006450-200112000-00013
26 schema:datePublished 2004-11-19
27 schema:datePublishedReg 2004-11-19
28 schema:description Injectable dexamethasone (DXM) is widely used during the postnatal period in premature infants. However, this treatment has been associated with an increased incidence of neuromotor disorders. Few studies have directly addressed the impact of DXM therapy on neuronal differentiation. We used a murine model of postnatal steroid therapy in which mouse pups aged 3 and 4 postnatal days (P) received intraperitoneal injections of 1 mg . kg(-1) . 12 h(-1) of an injectable preparation that contained DXM and sulfites (DXM), pure DXM, or sulfites. The animals were weighed before they were killed on P5, P10, or P21, and their brains were investigated by immunohistochemistry with markers for neuronal differentiation. DXM administration was associated with a 20-30% reduction in body and brain weight gains and in cortical thickness on P5 and P10. gamma-Amino-butyric acid+ (GABA+) interneuron density was significantly increased (+50%) in the cerebral cortex of the animals given injectable DXM on P5 to P21 compared with controls (p < 0.01). In parallel, the density of cortical neurons expressing two interneuron markers (calbindin 28-kD and calretinin) increased significantly. These alterations occurred with injectable DXM but not with pure DXM or sulfites alone. In contrast, none of the study treatments modified the expression of other markers for neuronal transmission or axon myelination. In the animals that were given injectable DXM, cleaved caspase 3 antibody showed increased neuronal cell death, but calbindin antibody did not. In conclusion, in a murine model of postnatal steroid therapy, injectable DXM induced a selective increase in GABAergic neurons in the cerebral cortex.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N789a245ba7df41ba9129e42f41bfda73
33 Nafb9069b1c0e42a8bfc8955d669a7754
34 sg:journal.1007352
35 schema:keywords Cortical GABAergic Neuronal Differentiation
36 DXM administration
37 DXM therapy
38 GABAergic neuronal differentiation
39 GABAergic neurons
40 Injectable Dexamethasone Administration
41 P10
42 P5
43 administration
44 alterations
45 animals
46 antibodies
47 body
48 brain
49 brain weight gain
50 butyric
51 calbindin antibody
52 caspase 3 antibody
53 cell death
54 cerebral cortex
55 conclusion
56 contrast
57 control
58 cortex
59 cortical neurons
60 cortical thickness
61 days
62 death
63 density
64 dexamethasone
65 dexamethasone administration
66 differentiation
67 disorders
68 expression
69 gain
70 gamma-Amino
71 immunohistochemistry
72 impact
73 incidence
74 increase
75 infants
76 injectable dexamethasone
77 injectable preparations
78 injection
79 interneuron density
80 interneuron markers
81 intraperitoneal injection
82 markers
83 mice
84 model
85 mouse pups
86 murine model
87 myelination
88 neuromotor disorders
89 neuronal cell death
90 neuronal differentiation
91 neuronal transmission
92 neurons
93 novel model
94 p21
95 parallel
96 period
97 postnatal day
98 postnatal period
99 postnatal steroid therapy
100 premature infants
101 preparation
102 pups
103 pure dexamethasone
104 reduction
105 selective increase
106 steroid therapy
107 study
108 study treatment
109 sulfite
110 therapy
111 thickness
112 transmission
113 treatment
114 weight gain
115 schema:name Injectable Dexamethasone Administration Enhances Cortical GABAergic Neuronal Differentiation in a Novel Model of Postnatal Steroid Therapy in Mice
116 schema:pagination 149-156
117 schema:productId N1d21dadfc11242e7a15e36eab6071afc
118 N5893e83b781c4bd8a44e7ba4ee687e97
119 Ned52064600fc43e8b8b930534e1bfac7
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023166215
121 https://doi.org/10.1203/01.pdr.0000148069.03855.c4
122 schema:sdDatePublished 2022-01-01T18:14
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N55ec5733c2204a29a73cb0f7021ef80b
125 schema:url https://doi.org/10.1203/01.pdr.0000148069.03855.c4
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N02bdb90fd67b4403ac6569da2416cd17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Mice
131 rdf:type schema:DefinedTerm
132 N157cca05967b4dff830d361ba5ef7954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Microscopy, Fluorescence
134 rdf:type schema:DefinedTerm
135 N16b60c39407842ab952f54af19ef2b01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Female
137 rdf:type schema:DefinedTerm
138 N1d21dadfc11242e7a15e36eab6071afc schema:name pubmed_id
139 schema:value 15557103
140 rdf:type schema:PropertyValue
141 N24907988d8c644deb0e0b1744acb9fe6 rdf:first sg:person.0640535361.49
142 rdf:rest N4b09638c2d88420087098eed6126d0f1
143 N27682ba796e04c2e95c5f5be176ffce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Body Weight
145 rdf:type schema:DefinedTerm
146 N279de57223fc4d0692917eae6ef11129 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Phenotype
148 rdf:type schema:DefinedTerm
149 N3b66d19bf4a945a5b01f7c337714e11b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Male
151 rdf:type schema:DefinedTerm
152 N42ae9a6e70674e16a584c6477c20996c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Neurons
154 rdf:type schema:DefinedTerm
155 N492fcfeee0204accac9f462854ae7564 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Cell Differentiation
157 rdf:type schema:DefinedTerm
158 N4b09638c2d88420087098eed6126d0f1 rdf:first sg:person.01272430242.87
159 rdf:rest Nf2c0a367db754049ab1ba728ad3609f3
160 N517e27313dca4d65bc369557bfff35f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Animals, Newborn
162 rdf:type schema:DefinedTerm
163 N536a843b23e44df2b1415cf67fc6ae6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Immunohistochemistry
165 rdf:type schema:DefinedTerm
166 N55ec5733c2204a29a73cb0f7021ef80b schema:name Springer Nature - SN SciGraph project
167 rdf:type schema:Organization
168 N5893e83b781c4bd8a44e7ba4ee687e97 schema:name dimensions_id
169 schema:value pub.1023166215
170 rdf:type schema:PropertyValue
171 N72b936ab0ba44af794a5362433ff2a2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Animals
173 rdf:type schema:DefinedTerm
174 N789a245ba7df41ba9129e42f41bfda73 schema:issueNumber 1
175 rdf:type schema:PublicationIssue
176 N8cca9cf5ae8b44e3b8c96b7b3257293f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Time Factors
178 rdf:type schema:DefinedTerm
179 N96e88182d48d4b36acba725677c6e016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Cell Death
181 rdf:type schema:DefinedTerm
182 N9b1a1a9a12f345ff81e041d2b448a560 rdf:first sg:person.0643134421.39
183 rdf:rest rdf:nil
184 Na879a87ac3e6416585fe62d1f805d1e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Glucocorticoids
186 rdf:type schema:DefinedTerm
187 Nafb9069b1c0e42a8bfc8955d669a7754 schema:volumeNumber 57
188 rdf:type schema:PublicationVolume
189 Ncc4958c5f30546b2b0e8398b26b7a41b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name gamma-Aminobutyric Acid
191 rdf:type schema:DefinedTerm
192 Ne4184b8add644dac83243a5e85b639b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Injections
194 rdf:type schema:DefinedTerm
195 Nec8d7da2d60f4fc0b375d5b8304ef299 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Steroids
197 rdf:type schema:DefinedTerm
198 Ned52064600fc43e8b8b930534e1bfac7 schema:name doi
199 schema:value 10.1203/01.pdr.0000148069.03855.c4
200 rdf:type schema:PropertyValue
201 Ned943ca43ce6438ca2de6cbd35db6ea0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Dexamethasone
203 rdf:type schema:DefinedTerm
204 Nededcab0f99c429b8460555f118778c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Cerebral Cortex
206 rdf:type schema:DefinedTerm
207 Nf2c0a367db754049ab1ba728ad3609f3 rdf:first sg:person.01003303231.52
208 rdf:rest N9b1a1a9a12f345ff81e041d2b448a560
209 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
210 schema:name Medical and Health Sciences
211 rdf:type schema:DefinedTerm
212 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
213 schema:name Neurosciences
214 rdf:type schema:DefinedTerm
215 sg:journal.1007352 schema:issn 0031-3998
216 1530-0447
217 schema:name Pediatric Research
218 schema:publisher Springer Nature
219 rdf:type schema:Periodical
220 sg:person.01003303231.52 schema:affiliation grid-institutes:grid.413235.2
221 schema:familyName EVRARD
222 schema:givenName PHILIPPE
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003303231.52
224 rdf:type schema:Person
225 sg:person.01272430242.87 schema:affiliation grid-institutes:grid.413235.2
226 schema:familyName VERNEY
227 schema:givenName CATHERINE
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272430242.87
229 rdf:type schema:Person
230 sg:person.0640535361.49 schema:affiliation grid-institutes:grid.413235.2
231 schema:familyName BAUD
232 schema:givenName OLIVIER
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640535361.49
234 rdf:type schema:Person
235 sg:person.0643134421.39 schema:affiliation grid-institutes:grid.413235.2
236 schema:familyName GRESSENS
237 schema:givenName PIERRE
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643134421.39
239 rdf:type schema:Person
240 sg:pub.10.1186/1471-2431-1-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025991156
241 https://doi.org/10.1186/1471-2431-1-1
242 rdf:type schema:CreativeWork
243 sg:pub.10.1203/00006450-200111000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010590793
244 https://doi.org/10.1203/00006450-200111000-00008
245 rdf:type schema:CreativeWork
246 sg:pub.10.1203/00006450-200112000-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019813658
247 https://doi.org/10.1203/00006450-200112000-00013
248 rdf:type schema:CreativeWork
249 grid-institutes:grid.413235.2 schema:alternateName Laboratoire de Neurobiologie du Développement &amp;lsqb;O.B., C.V., P.E., P.G.&amp;rsqb;, INSERM E9935, Paris, France; and Service de Néonatologie &amp;lsqb;O.B.&amp;rsqb; and Service de Neurologie &amp;lsqb;P.E., P.G.&amp;rsqb;, Hôpital Robert Debré, F-75019 Paris, France
250 schema:name Laboratoire de Neurobiologie du Développement &amp;lsqb;O.B., C.V., P.E., P.G.&amp;rsqb;, INSERM E9935, Paris, France; and Service de Néonatologie &amp;lsqb;O.B.&amp;rsqb; and Service de Neurologie &amp;lsqb;P.E., P.G.&amp;rsqb;, Hôpital Robert Debré, F-75019 Paris, France
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...