The Importance of Free Bilirubin Acid Salt in Bilirubin Uptake by Erythrocytes and Mitochondria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1988-04

AUTHORS

Richard P Wennberg

ABSTRACT

ABSTRACT: The binding of bilirubin to tissue was studied using adult human erythrocytes and rat liver mitochondria. Tissues were incubated with varying bilirubin-albumin molar ratios, varying albumin concentrations of a given bilirubin-albumin molar ratio, and varying pH. Bilirubin binding by tissue was reversible and stoichiometric with the concentration of the free (nonalbumin bound) bilirubin acid salt (bilirubin monovalent anion). Minimal binding of the bilirubin dianion, the predominant state of bilirubin in plasma, was also suggested. The observations support the “free bilirubin theory” where tissue and albumin compete for binding the body's bilirubin pool. Binding to tissue, however, is not determined by the free bilirubin concentration, but by the concentration of the pH dependent subfraction, the free bilirubin acid salt. Tissue binding and toxicity of bilirubin may result from the surfactant properties of the monovalent anion. More... »

PAGES

443-447

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1203/00006450-198804000-00021

DOI

http://dx.doi.org/10.1203/00006450-198804000-00021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049844825

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3374999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bilirubin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitochondria, Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serum Albumin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Neonatology, Department of Pediatrics, School of Medicine, University of California, 95616, Davis, California", 
          "id": "http://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Division of Neonatology, Department of Pediatrics, School of Medicine, University of California, 95616, Davis, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wennberg", 
        "givenName": "Richard P", 
        "id": "sg:person.070063300.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.070063300.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1203/00006450-197412000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024451456", 
          "https://doi.org/10.1203/00006450-197412000-00010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-04", 
    "datePublishedReg": "1988-04-01", 
    "description": "ABSTRACT: The binding of bilirubin to tissue was studied using adult human erythrocytes and rat liver mitochondria. Tissues were incubated with varying bilirubin-albumin molar ratios, varying albumin concentrations of a given bilirubin-albumin molar ratio, and varying pH. Bilirubin binding by tissue was reversible and stoichiometric with the concentration of the free (nonalbumin bound) bilirubin acid salt (bilirubin monovalent anion). Minimal binding of the bilirubin dianion, the predominant state of bilirubin in plasma, was also suggested. The observations support the \u201cfree bilirubin theory\u201d where tissue and albumin compete for binding the body's bilirubin pool. Binding to tissue, however, is not determined by the free bilirubin concentration, but by the concentration of the pH dependent subfraction, the free bilirubin acid salt. Tissue binding and toxicity of bilirubin may result from the surfactant properties of the monovalent anion.", 
    "genre": "article", 
    "id": "sg:pub.10.1203/00006450-198804000-00021", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1007352", 
        "issn": [
          "0031-3998", 
          "1530-0447"
        ], 
        "name": "Pediatric Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "bilirubin pool", 
      "albumin molar ratio", 
      "free bilirubin concentration", 
      "toxicity of bilirubin", 
      "albumin concentration", 
      "bilirubin-albumin molar ratio", 
      "bilirubin concentration", 
      "tissue binding", 
      "bilirubin", 
      "adult human erythrocytes", 
      "bilirubin uptake", 
      "binding of bilirubin", 
      "tissue", 
      "minimal binding", 
      "human erythrocytes", 
      "erythrocytes", 
      "liver mitochondria", 
      "rat liver mitochondria", 
      "binding", 
      "concentration", 
      "toxicity", 
      "mitochondria", 
      "albumin", 
      "subfractions", 
      "uptake", 
      "plasma", 
      "ratio", 
      "predominant state", 
      "acid salts", 
      "pool", 
      "importance", 
      "observations", 
      "salt", 
      "molar ratio", 
      "state", 
      "surfactant properties", 
      "monovalent anions", 
      "properties", 
      "bilirubin dianion", 
      "anions", 
      "theory", 
      "dianion"
    ], 
    "name": "The Importance of Free Bilirubin Acid Salt in Bilirubin Uptake by Erythrocytes and Mitochondria", 
    "pagination": "443-447", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049844825"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1203/00006450-198804000-00021"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3374999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1203/00006450-198804000-00021", 
      "https://app.dimensions.ai/details/publication/pub.1049844825"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_202.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1203/00006450-198804000-00021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1203/00006450-198804000-00021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1203/00006450-198804000-00021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1203/00006450-198804000-00021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1203/00006450-198804000-00021'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      22 PREDICATES      81 URIs      72 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1203/00006450-198804000-00021 schema:about N0a59049b12b54f3e91f8c9828e5e9813
2 N1e23f8db494348d0b7710266a29b00e9
3 N4d66006a3e194d8d9e12984b379c42d6
4 N521d4f030b8443d6b100b276b8d75289
5 N54e04f274a6247b59da6be06f07f01e9
6 N8061a83ded1946d9a96959375e97698d
7 N9ff43f7705f1424aa02c6a4286b60534
8 Na7313b639b3e4f03b3facc8d510f9ece
9 Nbfeb390daecb4c28a8e2dbb26f8ee263
10 Ncef8116ef02f4fdc8f2427a0f54fd3d1
11 Ne7f69e3a492c49b99ce0ca4baeb2b68f
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author Ndc7f605d2cc94aee82f943349cf38133
15 schema:citation sg:pub.10.1203/00006450-197412000-00010
16 schema:datePublished 1988-04
17 schema:datePublishedReg 1988-04-01
18 schema:description ABSTRACT: The binding of bilirubin to tissue was studied using adult human erythrocytes and rat liver mitochondria. Tissues were incubated with varying bilirubin-albumin molar ratios, varying albumin concentrations of a given bilirubin-albumin molar ratio, and varying pH. Bilirubin binding by tissue was reversible and stoichiometric with the concentration of the free (nonalbumin bound) bilirubin acid salt (bilirubin monovalent anion). Minimal binding of the bilirubin dianion, the predominant state of bilirubin in plasma, was also suggested. The observations support the “free bilirubin theory” where tissue and albumin compete for binding the body's bilirubin pool. Binding to tissue, however, is not determined by the free bilirubin concentration, but by the concentration of the pH dependent subfraction, the free bilirubin acid salt. Tissue binding and toxicity of bilirubin may result from the surfactant properties of the monovalent anion.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N7f71a312a898443bb7d7b8924c393a1b
23 Nb4a398a3b5fc4ba48adc910145ca0ebb
24 sg:journal.1007352
25 schema:keywords acid salts
26 adult human erythrocytes
27 albumin
28 albumin concentration
29 albumin molar ratio
30 anions
31 bilirubin
32 bilirubin concentration
33 bilirubin dianion
34 bilirubin pool
35 bilirubin uptake
36 bilirubin-albumin molar ratio
37 binding
38 binding of bilirubin
39 concentration
40 dianion
41 erythrocytes
42 free bilirubin concentration
43 human erythrocytes
44 importance
45 liver mitochondria
46 minimal binding
47 mitochondria
48 molar ratio
49 monovalent anions
50 observations
51 plasma
52 pool
53 predominant state
54 properties
55 rat liver mitochondria
56 ratio
57 salt
58 state
59 subfractions
60 surfactant properties
61 theory
62 tissue
63 tissue binding
64 toxicity
65 toxicity of bilirubin
66 uptake
67 schema:name The Importance of Free Bilirubin Acid Salt in Bilirubin Uptake by Erythrocytes and Mitochondria
68 schema:pagination 443-447
69 schema:productId N75b52d21925745c7b016d927104e1f8f
70 Ncb1f12bf760b4e15a011ff8382425905
71 Ne4ad71bbdb524e0a93b901dd78eb0cde
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049844825
73 https://doi.org/10.1203/00006450-198804000-00021
74 schema:sdDatePublished 2022-05-20T07:18
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Ncd2c803db02d432fb4171969fac8b081
77 schema:url https://doi.org/10.1203/00006450-198804000-00021
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0a59049b12b54f3e91f8c9828e5e9813 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Liver
83 rdf:type schema:DefinedTerm
84 N1e23f8db494348d0b7710266a29b00e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Mitochondria, Liver
86 rdf:type schema:DefinedTerm
87 N4d66006a3e194d8d9e12984b379c42d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 N521d4f030b8443d6b100b276b8d75289 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Rats
92 rdf:type schema:DefinedTerm
93 N54e04f274a6247b59da6be06f07f01e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Bilirubin
95 rdf:type schema:DefinedTerm
96 N75b52d21925745c7b016d927104e1f8f schema:name doi
97 schema:value 10.1203/00006450-198804000-00021
98 rdf:type schema:PropertyValue
99 N7f71a312a898443bb7d7b8924c393a1b schema:issueNumber 4
100 rdf:type schema:PublicationIssue
101 N8061a83ded1946d9a96959375e97698d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Hydrogen-Ion Concentration
103 rdf:type schema:DefinedTerm
104 N9ff43f7705f1424aa02c6a4286b60534 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Animals
106 rdf:type schema:DefinedTerm
107 Na7313b639b3e4f03b3facc8d510f9ece schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name In Vitro Techniques
109 rdf:type schema:DefinedTerm
110 Nb4a398a3b5fc4ba48adc910145ca0ebb schema:volumeNumber 23
111 rdf:type schema:PublicationVolume
112 Nbfeb390daecb4c28a8e2dbb26f8ee263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Serum Albumin
114 rdf:type schema:DefinedTerm
115 Ncb1f12bf760b4e15a011ff8382425905 schema:name pubmed_id
116 schema:value 3374999
117 rdf:type schema:PropertyValue
118 Ncd2c803db02d432fb4171969fac8b081 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Ncef8116ef02f4fdc8f2427a0f54fd3d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Models, Biological
122 rdf:type schema:DefinedTerm
123 Ndc7f605d2cc94aee82f943349cf38133 rdf:first sg:person.070063300.96
124 rdf:rest rdf:nil
125 Ne4ad71bbdb524e0a93b901dd78eb0cde schema:name dimensions_id
126 schema:value pub.1049844825
127 rdf:type schema:PropertyValue
128 Ne7f69e3a492c49b99ce0ca4baeb2b68f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Erythrocytes
130 rdf:type schema:DefinedTerm
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
135 schema:name Clinical Sciences
136 rdf:type schema:DefinedTerm
137 sg:journal.1007352 schema:issn 0031-3998
138 1530-0447
139 schema:name Pediatric Research
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.070063300.96 schema:affiliation grid-institutes:grid.27860.3b
143 schema:familyName Wennberg
144 schema:givenName Richard P
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.070063300.96
146 rdf:type schema:Person
147 sg:pub.10.1203/00006450-197412000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024451456
148 https://doi.org/10.1203/00006450-197412000-00010
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.27860.3b schema:alternateName Division of Neonatology, Department of Pediatrics, School of Medicine, University of California, 95616, Davis, California
151 schema:name Division of Neonatology, Department of Pediatrics, School of Medicine, University of California, 95616, Davis, California
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...