Analyzing designed experiments in distance sampling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

Stephen T. Buckland, Robin E. Russell, Brett G. Dickson, Victoria A. Saab, Donal N. Gorman, William M. Block

ABSTRACT

Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer’s ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates that are comparable across different species, ages, habitats, sexes, and so on. Increasing interest in evaluating the effects of management practices on animal populations in an experimental context has led to a need for suitable methods of analyzing distance sampling data. We outline a two-stage approach for analyzing distance sampling data from designed experiments, in which a two-step bootstrap is used to quantify precision and identify treatment effects. We illustrate this approach using data from a before—after control-impact experiment designed to assess the effects of large-scale prescribed fire treatments on bird densities in ponderosa pine forests of the southwestern United States. More... »

PAGES

432-442

References to SciGraph publications

  • 2000-09. Analysis of Count Data from Before-after Control-Impact Studies in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2002. Modern Applied Statistics with S in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1198/jabes.2009.08030

    DOI

    http://dx.doi.org/10.1198/jabes.2009.08030

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037473662


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of St Andrews", 
              "id": "https://www.grid.ac/institutes/grid.11914.3c", 
              "name": [
                "Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, KY16 9LZ, St. Andrews, Scotland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buckland", 
            "givenName": "Stephen T.", 
            "id": "sg:person.01325713462.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325713462.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "US Forest Service", 
              "id": "https://www.grid.ac/institutes/grid.472551.0", 
              "name": [
                "U.S. Forest Service, Rocky Mountain Research Station, Montana State University Campus, 59717, Bozeman, MT"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russell", 
            "givenName": "Robin E.", 
            "id": "sg:person.0611233424.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611233424.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northern Arizona University", 
              "id": "https://www.grid.ac/institutes/grid.261120.6", 
              "name": [
                "Center for Sustainable Environments, Northern Arizona University, 86001, Flagstaff, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dickson", 
            "givenName": "Brett G.", 
            "id": "sg:person.01152767264.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152767264.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "US Forest Service", 
              "id": "https://www.grid.ac/institutes/grid.472551.0", 
              "name": [
                "U.S. Forest Service, Rocky Mountain Research Station, Montana State University Campus, 59717, Bozeman, MT"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saab", 
            "givenName": "Victoria A.", 
            "id": "sg:person.015502540637.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502540637.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of St Andrews", 
              "id": "https://www.grid.ac/institutes/grid.11914.3c", 
              "name": [
                "School of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorman", 
            "givenName": "Donal N.", 
            "id": "sg:person.0741723101.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741723101.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "US Forest Service", 
              "id": "https://www.grid.ac/institutes/grid.472551.0", 
              "name": [
                "U.S. Forest Service, Rocky Mountain Research Station, Southwest Forest Science Complex, 86001, Flagstaff, AZ"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Block", 
            "givenName": "William M.", 
            "id": "sg:person.010665315511.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665315511.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2005.00493.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001733125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2664.2006.01271.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017313019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/08-0910.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017949975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2008.01018.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019532160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/f97-134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019654339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0006-341x.2003.00107.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030773137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0006-341x.2003.00107.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030773137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/08-0905.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034363743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1035613449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/0012-9615(2001)071[0305:tasvie]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049136500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1526-100x.2001.009003293.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050562979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1642/0004-8038(2001)118[0678:ropbtf]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068174098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1642/0004-8038(2001)118[0678:ropbtf]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068174098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068174786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068174786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2307/1400453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069472649", 
              "https://doi.org/10.2307/1400453"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-12", 
        "datePublishedReg": "2009-12-01", 
        "description": "Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer\u2019s ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates that are comparable across different species, ages, habitats, sexes, and so on. Increasing interest in evaluating the effects of management practices on animal populations in an experimental context has led to a need for suitable methods of analyzing distance sampling data. We outline a two-stage approach for analyzing distance sampling data from designed experiments, in which a two-step bootstrap is used to quantify precision and identify treatment effects. We illustrate this approach using data from a before\u2014after control-impact experiment designed to assess the effects of large-scale prescribed fire treatments on bird densities in ponderosa pine forests of the southwestern United States.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1198/jabes.2009.08030", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134206", 
            "issn": [
              "1085-7117", 
              "1537-2693"
            ], 
            "name": "Journal of Agricultural, Biological and Environmental Statistics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Analyzing designed experiments in distance sampling", 
        "pagination": "432-442", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b2824a1906725c7fa835df3660a434513b52beee7c66796c5f46e475c57c0c4a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1198/jabes.2009.08030"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037473662"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1198/jabes.2009.08030", 
          "https://app.dimensions.ai/details/publication/pub.1037473662"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1198/jabes.2009.08030"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1198/jabes.2009.08030'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1198/jabes.2009.08030'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1198/jabes.2009.08030'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1198/jabes.2009.08030'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1198/jabes.2009.08030 schema:about anzsrc-for:06
    2 anzsrc-for:0602
    3 schema:author N3f8cb1247a5c4c009550fa0fffdbb659
    4 schema:citation sg:pub.10.1007/978-0-387-21706-2
    5 sg:pub.10.2307/1400453
    6 https://app.dimensions.ai/details/publication/pub.1035613449
    7 https://doi.org/10.1046/j.1526-100x.2001.009003293.x
    8 https://doi.org/10.1111/j.0006-341x.2003.00107.x
    9 https://doi.org/10.1111/j.1365-2664.2006.01271.x
    10 https://doi.org/10.1111/j.1541-0420.2005.00493.x
    11 https://doi.org/10.1111/j.1541-0420.2008.01018.x
    12 https://doi.org/10.1139/f97-134
    13 https://doi.org/10.1642/0004-8038(2001)118[0678:ropbtf]2.0.co;2
    14 https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2
    15 https://doi.org/10.1890/0012-9615(2001)071[0305:tasvie]2.0.co;2
    16 https://doi.org/10.1890/08-0905.1
    17 https://doi.org/10.1890/08-0910.1
    18 schema:datePublished 2009-12
    19 schema:datePublishedReg 2009-12-01
    20 schema:description Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer’s ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates that are comparable across different species, ages, habitats, sexes, and so on. Increasing interest in evaluating the effects of management practices on animal populations in an experimental context has led to a need for suitable methods of analyzing distance sampling data. We outline a two-stage approach for analyzing distance sampling data from designed experiments, in which a two-step bootstrap is used to quantify precision and identify treatment effects. We illustrate this approach using data from a before—after control-impact experiment designed to assess the effects of large-scale prescribed fire treatments on bird densities in ponderosa pine forests of the southwestern United States.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N328b94d5fdd9413fadb464108dc58c7f
    25 N5936cf79208f424893cef3c7a20e269e
    26 sg:journal.1134206
    27 schema:name Analyzing designed experiments in distance sampling
    28 schema:pagination 432-442
    29 schema:productId N645392ae6c6f4f0a947e16794871f6bc
    30 Nc3cf5c43e45e42e5b4f161ce50fe2e4d
    31 Ne56c77ae40524974870ab660eb785bb4
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037473662
    33 https://doi.org/10.1198/jabes.2009.08030
    34 schema:sdDatePublished 2019-04-11T09:30
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N9c541126a407414f9eecf1de91788d86
    37 schema:url http://link.springer.com/10.1198/jabes.2009.08030
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N0a8ba64424864ff09f8746aa5c805a04 rdf:first sg:person.01152767264.67
    42 rdf:rest N2f6dc9083d4342009e6bd4e7ce2b5e65
    43 N189f221c97a14f198b24e4da13f81768 rdf:first sg:person.010665315511.10
    44 rdf:rest rdf:nil
    45 N2f6dc9083d4342009e6bd4e7ce2b5e65 rdf:first sg:person.015502540637.23
    46 rdf:rest N55675d39cb18469eb2f997139467e068
    47 N328b94d5fdd9413fadb464108dc58c7f schema:issueNumber 4
    48 rdf:type schema:PublicationIssue
    49 N3f8cb1247a5c4c009550fa0fffdbb659 rdf:first sg:person.01325713462.52
    50 rdf:rest Nac88cc6bba514b21b6d23ad431d1906a
    51 N55675d39cb18469eb2f997139467e068 rdf:first sg:person.0741723101.39
    52 rdf:rest N189f221c97a14f198b24e4da13f81768
    53 N5936cf79208f424893cef3c7a20e269e schema:volumeNumber 14
    54 rdf:type schema:PublicationVolume
    55 N645392ae6c6f4f0a947e16794871f6bc schema:name readcube_id
    56 schema:value b2824a1906725c7fa835df3660a434513b52beee7c66796c5f46e475c57c0c4a
    57 rdf:type schema:PropertyValue
    58 N9c541126a407414f9eecf1de91788d86 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Nac88cc6bba514b21b6d23ad431d1906a rdf:first sg:person.0611233424.27
    61 rdf:rest N0a8ba64424864ff09f8746aa5c805a04
    62 Nc3cf5c43e45e42e5b4f161ce50fe2e4d schema:name dimensions_id
    63 schema:value pub.1037473662
    64 rdf:type schema:PropertyValue
    65 Ne56c77ae40524974870ab660eb785bb4 schema:name doi
    66 schema:value 10.1198/jabes.2009.08030
    67 rdf:type schema:PropertyValue
    68 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Biological Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Ecology
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1134206 schema:issn 1085-7117
    75 1537-2693
    76 schema:name Journal of Agricultural, Biological and Environmental Statistics
    77 rdf:type schema:Periodical
    78 sg:person.010665315511.10 schema:affiliation https://www.grid.ac/institutes/grid.472551.0
    79 schema:familyName Block
    80 schema:givenName William M.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665315511.10
    82 rdf:type schema:Person
    83 sg:person.01152767264.67 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
    84 schema:familyName Dickson
    85 schema:givenName Brett G.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152767264.67
    87 rdf:type schema:Person
    88 sg:person.01325713462.52 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
    89 schema:familyName Buckland
    90 schema:givenName Stephen T.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325713462.52
    92 rdf:type schema:Person
    93 sg:person.015502540637.23 schema:affiliation https://www.grid.ac/institutes/grid.472551.0
    94 schema:familyName Saab
    95 schema:givenName Victoria A.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502540637.23
    97 rdf:type schema:Person
    98 sg:person.0611233424.27 schema:affiliation https://www.grid.ac/institutes/grid.472551.0
    99 schema:familyName Russell
    100 schema:givenName Robin E.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611233424.27
    102 rdf:type schema:Person
    103 sg:person.0741723101.39 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
    104 schema:familyName Gorman
    105 schema:givenName Donal N.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741723101.39
    107 rdf:type schema:Person
    108 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
    109 https://doi.org/10.1007/978-0-387-21706-2
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.2307/1400453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069472649
    112 https://doi.org/10.2307/1400453
    113 rdf:type schema:CreativeWork
    114 https://app.dimensions.ai/details/publication/pub.1035613449 schema:CreativeWork
    115 https://doi.org/10.1046/j.1526-100x.2001.009003293.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050562979
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1111/j.0006-341x.2003.00107.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030773137
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1111/j.1365-2664.2006.01271.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017313019
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1111/j.1541-0420.2005.00493.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001733125
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1111/j.1541-0420.2008.01018.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019532160
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1139/f97-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019654339
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1642/0004-8038(2001)118[0678:ropbtf]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068174098
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1642/0004-8038(2007)124[1229:ieobdu]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068174786
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1890/0012-9615(2001)071[0305:tasvie]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049136500
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1890/08-0905.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034363743
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1890/08-0910.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017949975
    136 rdf:type schema:CreativeWork
    137 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
    138 schema:name Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, KY16 9LZ, St. Andrews, Scotland
    139 School of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK
    140 rdf:type schema:Organization
    141 https://www.grid.ac/institutes/grid.261120.6 schema:alternateName Northern Arizona University
    142 schema:name Center for Sustainable Environments, Northern Arizona University, 86001, Flagstaff, AZ
    143 rdf:type schema:Organization
    144 https://www.grid.ac/institutes/grid.472551.0 schema:alternateName US Forest Service
    145 schema:name U.S. Forest Service, Rocky Mountain Research Station, Montana State University Campus, 59717, Bozeman, MT
    146 U.S. Forest Service, Rocky Mountain Research Station, Southwest Forest Science Complex, 86001, Flagstaff, AZ
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...