Collision probabilities for AFLP bands, with an application to simple measures of genetic similarity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

Gerrit Gort, Wim J. M. Koopman, Alfred Stein, Fred A. van Eeuwijk

ABSTRACT

AFLP is a frequently used DNA fingerprinting technique that is popular in the plant sciences. A problem encountered in the interpretation and comparison of individual plant profiles, consisting of band presence-absence patterns, is that multiple DNA fragments of the same length can be generated that eventually show up as single bands on a gel. The phenomenon of two or more fragments coinciding in a band within an individual profile is a type of homoplasy, that we call collision. Homoplasy biases estimates of genetic similarity. In this study, we show how to calculate collision probabilities for bands as a function of band length, given the fragment count, the band count, or band lengths. We also determine probabilities of higher order collisions, and estimate the total number of collisions for a profile. Since short fragments occur more often, short bands are more likely to contain collisions. For a typical plant genome and AFLP procedure, the collision probability for the shortest band is 25 times larger than for the longest. In a profile with 100 bands a quarter of the bands may contain collisions, concentrated at the shorter band lengths. All calculations require a careful estimate of the monotonically decreasing fragment length distribution. Modifications of Dice and Jaccard coefficients are proposed. The principles are illustrated on data from a phylogenetic study in lettuce. More... »

PAGES

177

Identifiers

URI

http://scigraph.springernature.com/pub.10.1198/108571108x308116

DOI

http://dx.doi.org/10.1198/108571108x308116

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023833694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Wageningen University, PO Box 100, 6700 AC, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gort", 
        "givenName": "Gerrit", 
        "id": "sg:person.01041562352.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041562352.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biosystematics Group, National Herbarium Nederland, Wageningen University branch, PO Box 100, 6700 AC, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koopman", 
        "givenName": "Wim J. M.", 
        "id": "sg:person.015172277224.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172277224.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
          "id": "https://www.grid.ac/institutes/grid.466856.f", 
          "name": [
            "Department of Earth Observation Science, ITC, P.O. Box 6, 7500 AA, Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Alfred", 
        "id": "sg:person.013105002112.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105002112.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Wageningen University, PO Box 100, 6700 AC, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Eeuwijk", 
        "givenName": "Fred A.", 
        "id": "sg:person.0650756633.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650756633.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1046/j.0962-1083.2001.01415.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002407872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:euph.0000040510.31827.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006159793", 
          "https://doi.org/10.1023/b:euph.0000040510.31827.ae"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g03-094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009273946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2006.00613.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020147728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2005.02416.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020488674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.103.015693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025528848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.103.015693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025528848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025967476", 
          "https://doi.org/10.1007/s001220051143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025967476", 
          "https://doi.org/10.1007/s001220051143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004390000438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599077", 
          "https://doi.org/10.1007/s004390000438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004390000438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599077", 
          "https://doi.org/10.1007/s004390000438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220100657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030139731", 
          "https://doi.org/10.1007/s001220100657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220100657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030139731", 
          "https://doi.org/10.1007/s001220100657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.21.4407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-294x.2000.00924.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043674062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(99)01659-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050698243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/anbo.2000.1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054486596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1998.10473713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701427077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-147-10-2729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060370525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2682958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070056650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3558364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070372092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074256809", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074662821", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082768899", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705877", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3242-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705877", 
          "https://doi.org/10.1007/978-1-4899-3242-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3242-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705877", 
          "https://doi.org/10.1007/978-1-4899-3242-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "AFLP is a frequently used DNA fingerprinting technique that is popular in the plant sciences. A problem encountered in the interpretation and comparison of individual plant profiles, consisting of band presence-absence patterns, is that multiple DNA fragments of the same length can be generated that eventually show up as single bands on a gel. The phenomenon of two or more fragments coinciding in a band within an individual profile is a type of homoplasy, that we call collision. Homoplasy biases estimates of genetic similarity. In this study, we show how to calculate collision probabilities for bands as a function of band length, given the fragment count, the band count, or band lengths. We also determine probabilities of higher order collisions, and estimate the total number of collisions for a profile. Since short fragments occur more often, short bands are more likely to contain collisions. For a typical plant genome and AFLP procedure, the collision probability for the shortest band is 25 times larger than for the longest. In a profile with 100 bands a quarter of the bands may contain collisions, concentrated at the shorter band lengths. All calculations require a careful estimate of the monotonically decreasing fragment length distribution. Modifications of Dice and Jaccard coefficients are proposed. The principles are illustrated on data from a phylogenetic study in lettuce.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1198/108571108x308116", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134206", 
        "issn": [
          "1085-7117", 
          "1537-2693"
        ], 
        "name": "Journal of Agricultural, Biological and Environmental Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Collision probabilities for AFLP bands, with an application to simple measures of genetic similarity", 
    "pagination": "177", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "718c09c6c211b917a90422daba795a405501fbe6fd4ec7d093752bdd041f432a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1198/108571108x308116"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023833694"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1198/108571108x308116", 
      "https://app.dimensions.ai/details/publication/pub.1023833694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1198/108571108X308116"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1198/108571108x308116'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1198/108571108x308116'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1198/108571108x308116'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1198/108571108x308116'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1198/108571108x308116 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8826e39f53de42d78ef45e63578dba02
4 schema:citation sg:pub.10.1007/978-1-4899-3242-6
5 sg:pub.10.1007/s001220051143
6 sg:pub.10.1007/s001220100657
7 sg:pub.10.1007/s004390000438
8 sg:pub.10.1023/b:euph.0000040510.31827.ae
9 https://app.dimensions.ai/details/publication/pub.1074256809
10 https://app.dimensions.ai/details/publication/pub.1074662821
11 https://app.dimensions.ai/details/publication/pub.1082768899
12 https://app.dimensions.ai/details/publication/pub.1109705877
13 https://doi.org/10.1006/anbo.2000.1253
14 https://doi.org/10.1016/s0169-5347(99)01659-6
15 https://doi.org/10.1046/j.0962-1083.2001.01415.x
16 https://doi.org/10.1046/j.1365-294x.2000.00924.x
17 https://doi.org/10.1080/01621459.1998.10473713
18 https://doi.org/10.1080/10635150701427077
19 https://doi.org/10.1093/nar/23.21.4407
20 https://doi.org/10.1099/00221287-147-10-2729
21 https://doi.org/10.1111/j.1365-294x.2005.02416.x
22 https://doi.org/10.1111/j.1541-0420.2006.00613.x
23 https://doi.org/10.1139/g03-094
24 https://doi.org/10.1534/genetics.103.015693
25 https://doi.org/10.2307/2682958
26 https://doi.org/10.2307/3558364
27 schema:datePublished 2008-06
28 schema:datePublishedReg 2008-06-01
29 schema:description AFLP is a frequently used DNA fingerprinting technique that is popular in the plant sciences. A problem encountered in the interpretation and comparison of individual plant profiles, consisting of band presence-absence patterns, is that multiple DNA fragments of the same length can be generated that eventually show up as single bands on a gel. The phenomenon of two or more fragments coinciding in a band within an individual profile is a type of homoplasy, that we call collision. Homoplasy biases estimates of genetic similarity. In this study, we show how to calculate collision probabilities for bands as a function of band length, given the fragment count, the band count, or band lengths. We also determine probabilities of higher order collisions, and estimate the total number of collisions for a profile. Since short fragments occur more often, short bands are more likely to contain collisions. For a typical plant genome and AFLP procedure, the collision probability for the shortest band is 25 times larger than for the longest. In a profile with 100 bands a quarter of the bands may contain collisions, concentrated at the shorter band lengths. All calculations require a careful estimate of the monotonically decreasing fragment length distribution. Modifications of Dice and Jaccard coefficients are proposed. The principles are illustrated on data from a phylogenetic study in lettuce.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N15752ad50855453da3a0ff997f1fd265
34 Nf229a2548410419487296c7e1697465b
35 sg:journal.1134206
36 schema:name Collision probabilities for AFLP bands, with an application to simple measures of genetic similarity
37 schema:pagination 177
38 schema:productId N6497615917034542989f33a7a4cfcce1
39 N7a3c18bbaf4b4f0487f43a00e6866d16
40 Nb20e813217884aa7b31f801a964a9458
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023833694
42 https://doi.org/10.1198/108571108x308116
43 schema:sdDatePublished 2019-04-10T22:44
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nf95848d5b3744da1a12daa3a6862e60c
46 schema:url http://link.springer.com/10.1198/108571108X308116
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0516f7eac37940989fd83991310689f5 rdf:first sg:person.0650756633.82
51 rdf:rest rdf:nil
52 N15752ad50855453da3a0ff997f1fd265 schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 N6497615917034542989f33a7a4cfcce1 schema:name readcube_id
55 schema:value 718c09c6c211b917a90422daba795a405501fbe6fd4ec7d093752bdd041f432a
56 rdf:type schema:PropertyValue
57 N7a3c18bbaf4b4f0487f43a00e6866d16 schema:name doi
58 schema:value 10.1198/108571108x308116
59 rdf:type schema:PropertyValue
60 N8826e39f53de42d78ef45e63578dba02 rdf:first sg:person.01041562352.51
61 rdf:rest Ndcbf51f041614a5db8ae0b956ca3edcc
62 N92e3758b703847709091d77400de3488 rdf:first sg:person.013105002112.72
63 rdf:rest N0516f7eac37940989fd83991310689f5
64 Nb20e813217884aa7b31f801a964a9458 schema:name dimensions_id
65 schema:value pub.1023833694
66 rdf:type schema:PropertyValue
67 Nccabac35a2c34a63b3e734590da716fb schema:name Biosystematics Group, National Herbarium Nederland, Wageningen University branch, PO Box 100, 6700 AC, Wageningen, The Netherlands
68 rdf:type schema:Organization
69 Ndcbf51f041614a5db8ae0b956ca3edcc rdf:first sg:person.015172277224.07
70 rdf:rest N92e3758b703847709091d77400de3488
71 Nf229a2548410419487296c7e1697465b schema:volumeNumber 13
72 rdf:type schema:PublicationVolume
73 Nf95848d5b3744da1a12daa3a6862e60c schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:journal.1134206 schema:issn 1085-7117
82 1537-2693
83 schema:name Journal of Agricultural, Biological and Environmental Statistics
84 rdf:type schema:Periodical
85 sg:person.01041562352.51 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
86 schema:familyName Gort
87 schema:givenName Gerrit
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041562352.51
89 rdf:type schema:Person
90 sg:person.013105002112.72 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
91 schema:familyName Stein
92 schema:givenName Alfred
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105002112.72
94 rdf:type schema:Person
95 sg:person.015172277224.07 schema:affiliation Nccabac35a2c34a63b3e734590da716fb
96 schema:familyName Koopman
97 schema:givenName Wim J. M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172277224.07
99 rdf:type schema:Person
100 sg:person.0650756633.82 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
101 schema:familyName van Eeuwijk
102 schema:givenName Fred A.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650756633.82
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
106 https://doi.org/10.1007/978-1-4899-3242-6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s001220051143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025967476
109 https://doi.org/10.1007/s001220051143
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s001220100657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030139731
112 https://doi.org/10.1007/s001220100657
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s004390000438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028599077
115 https://doi.org/10.1007/s004390000438
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/b:euph.0000040510.31827.ae schema:sameAs https://app.dimensions.ai/details/publication/pub.1006159793
118 https://doi.org/10.1023/b:euph.0000040510.31827.ae
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1074256809 schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1074662821 schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1082768899 schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1109705877 schema:CreativeWork
124 https://doi.org/10.1006/anbo.2000.1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054486596
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0169-5347(99)01659-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050698243
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1046/j.0962-1083.2001.01415.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002407872
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1046/j.1365-294x.2000.00924.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043674062
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/01621459.1998.10473713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305352
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/10635150701427077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369698
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/nar/23.21.4407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685674
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1099/00221287-147-10-2729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060370525
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/j.1365-294x.2005.02416.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020488674
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/j.1541-0420.2006.00613.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020147728
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1139/g03-094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009273946
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1534/genetics.103.015693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025528848
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/2682958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070056650
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2307/3558364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070372092
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.466856.f schema:alternateName International Institute for Geo-Information Science and Earth Observation
153 schema:name Department of Earth Observation Science, ITC, P.O. Box 6, 7500 AA, Enschede, The Netherlands
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
156 schema:name Wageningen University, PO Box 100, 6700 AC, Wageningen, The Netherlands
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...