Using linear-bilinear models for studying gene expression × treatment interaction in microarray experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

Jose Crossa, Juan Burgueño, Daphne Autran, Jean-Philippe Vielle-Calzada, Paul L. Cornelius, Normand Garcia, Fabio Salamanca, Diego Arenas

ABSTRACT

In microarray experiments, the global and the specific gene expression in the two-way table of gene x treatments (or tissues) can be studied using linear-bilinear models that incorporate the main effects of genes (G), treatment (T), and gene x treatment interaction (G x T). The plot of the first two axes obtained from the singular value decomposition of the bilinear (multiplicative) term of these models (biplot) facilitates the interpretation of the gene expression patterns. In this study, two microarray datasets were used to illustrate how two linear-bilinear models, the additive main effect and multiplicative interaction (AMMI) and the treatment regression model (TREG) and their biplots can be used to determine the overall gene expression pattern across treatments (or tissues) and for specific treatments. Dataset 1 had 5,339 genes and the objective was to identify genes with modified expression during maize (Zea mays) seed development in response to different parental ploidy levels. In Dataset 2, the aim was to study gene expression in 15 tissue samples with different levels of development of breast cancer when compared with the expression of the genes in noninfected tissues. The results from the analyses of Dataset 1 showed that the biplots of the AMMI and TREG models allow identification of subsets of genes and treatments with noncrossover G x T interaction or with important levels of crossover G x T. Results from Dataset 2 showed that the TREG model and its biplot facilitates the identification of genes with high expression in all tumor cells. Also, the TREG biplots allowed identification of subsets of genes with a low level of gene x tissue crossover interaction. More... »

PAGES

337-353

Identifiers

URI

http://scigraph.springernature.com/pub.10.1198/108571105x58216

DOI

http://dx.doi.org/10.1198/108571105x58216

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050752033


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico DF., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "Jose", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico DF., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "Juan", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Laboratory of Reproductive Development and Apomixis, CINVESTAV, IPN, Apdo, Postal 629, 36500, Irapuato, Guanajuato, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Autran", 
        "givenName": "Daphne", 
        "id": "sg:person.01306323673.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306323673.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Laboratory of Reproductive Development and Apomixis, CINVESTAV, IPN, Apdo, Postal 629, 36500, Irapuato, Guanajuato, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vielle-Calzada", 
        "givenName": "Jean-Philippe", 
        "id": "sg:person.01167704567.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167704567.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Plant and Soil Sciences and Department of Statistics, University of Kentucky, 40546-0312, Lexington, KY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cornelius", 
        "givenName": "Paul L.", 
        "id": "sg:person.011270702743.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270702743.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro Medico Nacional Siglo XXI", 
          "id": "https://www.grid.ac/institutes/grid.418385.3", 
          "name": [
            "Laboratory of Molecular Genetics, Unit of Medical Research in Human Genetics, Hospital de Pediatria, Centro M\u00e9dico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ave. Cuauhtemoc 330, Col Doctores CP 06720, M\u00e9xico, DF, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Normand", 
        "id": "sg:person.01200427453.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200427453.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro Medico Nacional Siglo XXI", 
          "id": "https://www.grid.ac/institutes/grid.418385.3", 
          "name": [
            "Laboratory of Molecular Genetics, Unit of Medical Research in Human Genetics, Hospital de Pediatria, Centro M\u00e9dico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ave. Cuauhtemoc 330, Col Doctores CP 06720, M\u00e9xico, DF, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salamanca", 
        "givenName": "Fabio", 
        "id": "sg:person.01074130236.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074130236.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro Medico Nacional Siglo XXI", 
          "id": "https://www.grid.ac/institutes/grid.418385.3", 
          "name": [
            "Laboratory of Molecular Genetics, Unit of Medical Research in Human Genetics, Hospital de Pediatria, Centro M\u00e9dico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ave. Cuauhtemoc 330, Col Doctores CP 06720, M\u00e9xico, DF, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arenas", 
        "givenName": "Diego", 
        "id": "sg:person.0753613553.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753613553.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.97.18.10101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008932027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0530258100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016312020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2003.00130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017838194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2003.00130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017838194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018680863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026224962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.6.566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039528436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043805326", 
          "https://doi.org/10.1007/bf02289676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043805326", 
          "https://doi.org/10.1007/bf02289676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2002.01491.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044470183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051317903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.1.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052822491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1971.10488751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/39.1-2.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1988.00021962008000030002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068992114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2002.0619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2005.0748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069029603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977026"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "In microarray experiments, the global and the specific gene expression in the two-way table of gene x treatments (or tissues) can be studied using linear-bilinear models that incorporate the main effects of genes (G), treatment (T), and gene x treatment interaction (G x T). The plot of the first two axes obtained from the singular value decomposition of the bilinear (multiplicative) term of these models (biplot) facilitates the interpretation of the gene expression patterns. In this study, two microarray datasets were used to illustrate how two linear-bilinear models, the additive main effect and multiplicative interaction (AMMI) and the treatment regression model (TREG) and their biplots can be used to determine the overall gene expression pattern across treatments (or tissues) and for specific treatments. Dataset 1 had 5,339 genes and the objective was to identify genes with modified expression during maize (Zea mays) seed development in response to different parental ploidy levels. In Dataset 2, the aim was to study gene expression in 15 tissue samples with different levels of development of breast cancer when compared with the expression of the genes in noninfected tissues. The results from the analyses of Dataset 1 showed that the biplots of the AMMI and TREG models allow identification of subsets of genes and treatments with noncrossover G x T interaction or with important levels of crossover G x T. Results from Dataset 2 showed that the TREG model and its biplot facilitates the identification of genes with high expression in all tumor cells. Also, the TREG biplots allowed identification of subsets of genes with a low level of gene x tissue crossover interaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1198/108571105x58216", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134206", 
        "issn": [
          "1085-7117", 
          "1537-2693"
        ], 
        "name": "Journal of Agricultural, Biological and Environmental Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Using linear-bilinear models for studying gene expression \u00d7 treatment interaction in microarray experiments", 
    "pagination": "337-353", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1c3409490920254535a6d462212eceb37db4fa50d48af629947c9a7de403df0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1198/108571105x58216"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050752033"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1198/108571105x58216", 
      "https://app.dimensions.ai/details/publication/pub.1050752033"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53014_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1198/108571105X58216"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1198/108571105x58216'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1198/108571105x58216'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1198/108571105x58216'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1198/108571105x58216'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1198/108571105x58216 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N17224162019342c8bcab23d58278584d
4 schema:citation sg:pub.10.1007/bf02289676
5 https://doi.org/10.1046/j.1365-313x.2002.01491.x
6 https://doi.org/10.1073/pnas.0530258100
7 https://doi.org/10.1073/pnas.97.18.10101
8 https://doi.org/10.1080/00401706.1971.10488751
9 https://doi.org/10.1093/bioinformatics/17.6.566
10 https://doi.org/10.1093/bioinformatics/18.1.202
11 https://doi.org/10.1093/bioinformatics/18.3.413
12 https://doi.org/10.1093/bioinformatics/bth384
13 https://doi.org/10.1093/biomet/39.1-2.65
14 https://doi.org/10.1111/j.0006-341x.2003.00130.x
15 https://doi.org/10.2134/agronj1988.00021962008000030002x
16 https://doi.org/10.2135/cropsci2002.0619
17 https://doi.org/10.2135/cropsci2005.0748
18 https://doi.org/10.2202/1544-6115.1019
19 https://doi.org/10.2307/2531585
20 schema:datePublished 2005-09
21 schema:datePublishedReg 2005-09-01
22 schema:description In microarray experiments, the global and the specific gene expression in the two-way table of gene x treatments (or tissues) can be studied using linear-bilinear models that incorporate the main effects of genes (G), treatment (T), and gene x treatment interaction (G x T). The plot of the first two axes obtained from the singular value decomposition of the bilinear (multiplicative) term of these models (biplot) facilitates the interpretation of the gene expression patterns. In this study, two microarray datasets were used to illustrate how two linear-bilinear models, the additive main effect and multiplicative interaction (AMMI) and the treatment regression model (TREG) and their biplots can be used to determine the overall gene expression pattern across treatments (or tissues) and for specific treatments. Dataset 1 had 5,339 genes and the objective was to identify genes with modified expression during maize (Zea mays) seed development in response to different parental ploidy levels. In Dataset 2, the aim was to study gene expression in 15 tissue samples with different levels of development of breast cancer when compared with the expression of the genes in noninfected tissues. The results from the analyses of Dataset 1 showed that the biplots of the AMMI and TREG models allow identification of subsets of genes and treatments with noncrossover G x T interaction or with important levels of crossover G x T. Results from Dataset 2 showed that the TREG model and its biplot facilitates the identification of genes with high expression in all tumor cells. Also, the TREG biplots allowed identification of subsets of genes with a low level of gene x tissue crossover interaction.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2d0ce9c43d86436895b7bead1de5e097
27 N4660d1d9bb4e4fd385bb7521ed47ef62
28 sg:journal.1134206
29 schema:name Using linear-bilinear models for studying gene expression × treatment interaction in microarray experiments
30 schema:pagination 337-353
31 schema:productId N623d8b23a0dd46fc98645f3655c444d7
32 N8f719f09993e4b09a04db423516e72e1
33 Nf19ccef00dee4382b4c708740f21cbcf
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050752033
35 https://doi.org/10.1198/108571105x58216
36 schema:sdDatePublished 2019-04-11T11:24
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ncb877c227d1d45bebf22510a6ab44e8f
39 schema:url http://link.springer.com/10.1198/108571105X58216
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N17224162019342c8bcab23d58278584d rdf:first sg:person.01274600533.83
44 rdf:rest Nfbd5c9653fd04e7aa4620b2e086a663f
45 N25eb4dcc282e41bbb9b97707b275fb24 rdf:first sg:person.011270702743.59
46 rdf:rest Nfced0403bff24cb08ecd323ede5ed9a8
47 N2d0ce9c43d86436895b7bead1de5e097 schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 N303b672ce1794232aeb15d6789b600ca rdf:first sg:person.01167704567.00
50 rdf:rest N25eb4dcc282e41bbb9b97707b275fb24
51 N4660d1d9bb4e4fd385bb7521ed47ef62 schema:volumeNumber 10
52 rdf:type schema:PublicationVolume
53 N623d8b23a0dd46fc98645f3655c444d7 schema:name dimensions_id
54 schema:value pub.1050752033
55 rdf:type schema:PropertyValue
56 N7ac37cb4a8f44d66a2f1253b01b4f2e4 rdf:first sg:person.0753613553.49
57 rdf:rest rdf:nil
58 N8f719f09993e4b09a04db423516e72e1 schema:name doi
59 schema:value 10.1198/108571105x58216
60 rdf:type schema:PropertyValue
61 Nac4669d22e9a4044bd8168c2fd8fd56e rdf:first sg:person.01074130236.63
62 rdf:rest N7ac37cb4a8f44d66a2f1253b01b4f2e4
63 Nb10f10a937514b32a1dce5b6f7cf115b rdf:first sg:person.01306323673.22
64 rdf:rest N303b672ce1794232aeb15d6789b600ca
65 Ncb877c227d1d45bebf22510a6ab44e8f schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nf19ccef00dee4382b4c708740f21cbcf schema:name readcube_id
68 schema:value f1c3409490920254535a6d462212eceb37db4fa50d48af629947c9a7de403df0
69 rdf:type schema:PropertyValue
70 Nfbd5c9653fd04e7aa4620b2e086a663f rdf:first sg:person.0733536233.17
71 rdf:rest Nb10f10a937514b32a1dce5b6f7cf115b
72 Nfced0403bff24cb08ecd323ede5ed9a8 rdf:first sg:person.01200427453.04
73 rdf:rest Nac4669d22e9a4044bd8168c2fd8fd56e
74 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
75 schema:name Biological Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
78 schema:name Genetics
79 rdf:type schema:DefinedTerm
80 sg:journal.1134206 schema:issn 1085-7117
81 1537-2693
82 schema:name Journal of Agricultural, Biological and Environmental Statistics
83 rdf:type schema:Periodical
84 sg:person.01074130236.63 schema:affiliation https://www.grid.ac/institutes/grid.418385.3
85 schema:familyName Salamanca
86 schema:givenName Fabio
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074130236.63
88 rdf:type schema:Person
89 sg:person.011270702743.59 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
90 schema:familyName Cornelius
91 schema:givenName Paul L.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011270702743.59
93 rdf:type schema:Person
94 sg:person.01167704567.00 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
95 schema:familyName Vielle-Calzada
96 schema:givenName Jean-Philippe
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167704567.00
98 rdf:type schema:Person
99 sg:person.01200427453.04 schema:affiliation https://www.grid.ac/institutes/grid.418385.3
100 schema:familyName Garcia
101 schema:givenName Normand
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200427453.04
103 rdf:type schema:Person
104 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
105 schema:familyName Crossa
106 schema:givenName Jose
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
108 rdf:type schema:Person
109 sg:person.01306323673.22 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
110 schema:familyName Autran
111 schema:givenName Daphne
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306323673.22
113 rdf:type schema:Person
114 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
115 schema:familyName Burgueño
116 schema:givenName Juan
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
118 rdf:type schema:Person
119 sg:person.0753613553.49 schema:affiliation https://www.grid.ac/institutes/grid.418385.3
120 schema:familyName Arenas
121 schema:givenName Diego
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753613553.49
123 rdf:type schema:Person
124 sg:pub.10.1007/bf02289676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043805326
125 https://doi.org/10.1007/bf02289676
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1046/j.1365-313x.2002.01491.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044470183
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.0530258100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016312020
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1073/pnas.97.18.10101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008932027
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/00401706.1971.10488751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284240
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/bioinformatics/17.6.566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039528436
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/bioinformatics/18.1.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052822491
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/bioinformatics/18.3.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051317903
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/bioinformatics/bth384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018680863
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/biomet/39.1-2.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416250
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.0006-341x.2003.00130.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017838194
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2134/agronj1988.00021962008000030002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068992114
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2135/cropsci2002.0619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027518
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2135/cropsci2005.0748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029603
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2202/1544-6115.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026224962
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2307/2531585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977026
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
158 schema:name Department of Plant and Soil Sciences and Department of Statistics, University of Kentucky, 40546-0312, Lexington, KY
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
161 schema:name Laboratory of Reproductive Development and Apomixis, CINVESTAV, IPN, Apdo, Postal 629, 36500, Irapuato, Guanajuato, México
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.418385.3 schema:alternateName Centro Medico Nacional Siglo XXI
164 schema:name Laboratory of Molecular Genetics, Unit of Medical Research in Human Genetics, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ave. Cuauhtemoc 330, Col Doctores CP 06720, México, DF, México
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
167 schema:name Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico DF., México
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...