Combining population density estimates in line transect sampling using the kernel method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-06

AUTHORS

Patrick D. Gerard, William R. Schucany

ABSTRACT

Line transect methods that are pooling robust allow data from different transects or locations to be pooled for estimation of population density. This is particularly important in situations where data from individual transects are sparse and pooling is done out of necessity. In this study, we investigate a method for combining estimates from individual transects when each transect has sufficient data to support estimation with the kernel method. It is based on a minimizer of the asymptotic mean squared error of a linear combination of the individual population density estimators. The asymptotic mean squared error of the simple pooled estimator is always at least as large as the optimally combined estimator. We apply this combination to two estimates from data on a real population of mussels. Using a variety of simulations, we demonstrate the better finite-sample efficiency for combining unbalanced cases. In practice, if the detection functions were identical, it could be better to pool, but the gains are modest. On the other hand, when the detection functions are different, it can be substantially better to combine. This recommends the new linear combination. More... »

PAGES

233

References to SciGraph publications

  • 1995. Kernel Smoothing in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1198/10857110260141265

    DOI

    http://dx.doi.org/10.1198/10857110260141265

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039483193


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Experimental Statistics Unit, Mississippi State University, Box 9653, 39762, MS", 
              "id": "http://www.grid.ac/institutes/grid.260120.7", 
              "name": [
                "Experimental Statistics Unit, Mississippi State University, Box 9653, 39762, MS"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerard", 
            "givenName": "Patrick D.", 
            "id": "sg:person.0644130544.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644130544.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Statistical Science, Southern Methodist University, 75275-0332, Dallas, TX", 
              "id": "http://www.grid.ac/institutes/grid.263864.d", 
              "name": [
                "Department of Statistical Science, Southern Methodist University, 75275-0332, Dallas, TX"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schucany", 
            "givenName": "William R.", 
            "id": "sg:person.01166576632.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166576632.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4899-4493-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705924", 
              "https://doi.org/10.1007/978-1-4899-4493-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-06", 
        "datePublishedReg": "2002-06-01", 
        "description": "Line transect methods that are pooling robust allow data from different transects or locations to be pooled for estimation of population density. This is particularly important in situations where data from individual transects are sparse and pooling is done out of necessity. In this study, we investigate a method for combining estimates from individual transects when each transect has sufficient data to support estimation with the kernel method. It is based on a minimizer of the asymptotic mean squared error of a linear combination of the individual population density estimators. The asymptotic mean squared error of the simple pooled estimator is always at least as large as the optimally combined estimator. We apply this combination to two estimates from data on a real population of mussels. Using a variety of simulations, we demonstrate the better finite-sample efficiency for combining unbalanced cases. In practice, if the detection functions were identical, it could be better to pool, but the gains are modest. On the other hand, when the detection functions are different, it can be substantially better to combine. This recommends the new linear combination.", 
        "genre": "article", 
        "id": "sg:pub.10.1198/10857110260141265", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1134206", 
            "issn": [
              "1085-7117", 
              "1537-2693"
            ], 
            "name": "Journal of Agricultural, Biological and Environmental Statistics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "asymptotic mean squared error", 
          "mean squared error", 
          "finite-sample efficiency", 
          "kernel methods", 
          "linear combination", 
          "squared error", 
          "variety of simulations", 
          "estimator", 
          "density estimator", 
          "unbalanced case", 
          "real populations", 
          "estimation", 
          "density estimates", 
          "detection function", 
          "estimates", 
          "minimizers", 
          "error", 
          "simulations", 
          "function", 
          "sufficient data", 
          "line transect method", 
          "data", 
          "line transects", 
          "efficiency", 
          "gain", 
          "situation", 
          "cases", 
          "combination", 
          "necessity", 
          "variety", 
          "population density", 
          "transect method", 
          "hand", 
          "population density estimates", 
          "location", 
          "density", 
          "method", 
          "different transects", 
          "new linear combinations", 
          "practice", 
          "study", 
          "population", 
          "transect", 
          "mussels", 
          "individual transects", 
          "robust allow data", 
          "allow data", 
          "individual population density estimators", 
          "population density estimators", 
          "better finite-sample efficiency"
        ], 
        "name": "Combining population density estimates in line transect sampling using the kernel method", 
        "pagination": "233", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039483193"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1198/10857110260141265"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1198/10857110260141265", 
          "https://app.dimensions.ai/details/publication/pub.1039483193"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_356.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1198/10857110260141265"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1198/10857110260141265'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1198/10857110260141265'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1198/10857110260141265'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1198/10857110260141265'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      22 PREDICATES      77 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1198/10857110260141265 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N3ecb5fd985c340aabe5ecf10f556669f
    4 schema:citation sg:pub.10.1007/978-1-4899-4493-1
    5 schema:datePublished 2002-06
    6 schema:datePublishedReg 2002-06-01
    7 schema:description Line transect methods that are pooling robust allow data from different transects or locations to be pooled for estimation of population density. This is particularly important in situations where data from individual transects are sparse and pooling is done out of necessity. In this study, we investigate a method for combining estimates from individual transects when each transect has sufficient data to support estimation with the kernel method. It is based on a minimizer of the asymptotic mean squared error of a linear combination of the individual population density estimators. The asymptotic mean squared error of the simple pooled estimator is always at least as large as the optimally combined estimator. We apply this combination to two estimates from data on a real population of mussels. Using a variety of simulations, we demonstrate the better finite-sample efficiency for combining unbalanced cases. In practice, if the detection functions were identical, it could be better to pool, but the gains are modest. On the other hand, when the detection functions are different, it can be substantially better to combine. This recommends the new linear combination.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N059b5d9233d14aefa0f61f394e71f345
    12 N3fbc19ca2ff948d38f3f15f54c7f8a3a
    13 sg:journal.1134206
    14 schema:keywords allow data
    15 asymptotic mean squared error
    16 better finite-sample efficiency
    17 cases
    18 combination
    19 data
    20 density
    21 density estimates
    22 density estimator
    23 detection function
    24 different transects
    25 efficiency
    26 error
    27 estimates
    28 estimation
    29 estimator
    30 finite-sample efficiency
    31 function
    32 gain
    33 hand
    34 individual population density estimators
    35 individual transects
    36 kernel methods
    37 line transect method
    38 line transects
    39 linear combination
    40 location
    41 mean squared error
    42 method
    43 minimizers
    44 mussels
    45 necessity
    46 new linear combinations
    47 population
    48 population density
    49 population density estimates
    50 population density estimators
    51 practice
    52 real populations
    53 robust allow data
    54 simulations
    55 situation
    56 squared error
    57 study
    58 sufficient data
    59 transect
    60 transect method
    61 unbalanced case
    62 variety
    63 variety of simulations
    64 schema:name Combining population density estimates in line transect sampling using the kernel method
    65 schema:pagination 233
    66 schema:productId Nb490853e066645739968523fea559305
    67 Nde6a3660c3884d3b9c3074f4fd320416
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039483193
    69 https://doi.org/10.1198/10857110260141265
    70 schema:sdDatePublished 2022-01-01T18:12
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N3540e1f6af4342e4ba56875140208d41
    73 schema:url https://doi.org/10.1198/10857110260141265
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N059b5d9233d14aefa0f61f394e71f345 schema:volumeNumber 7
    78 rdf:type schema:PublicationVolume
    79 N3540e1f6af4342e4ba56875140208d41 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N3ecb5fd985c340aabe5ecf10f556669f rdf:first sg:person.0644130544.49
    82 rdf:rest Nb7e0ec19bfad4916ae5ea8863542472a
    83 N3fbc19ca2ff948d38f3f15f54c7f8a3a schema:issueNumber 2
    84 rdf:type schema:PublicationIssue
    85 Nb490853e066645739968523fea559305 schema:name doi
    86 schema:value 10.1198/10857110260141265
    87 rdf:type schema:PropertyValue
    88 Nb7e0ec19bfad4916ae5ea8863542472a rdf:first sg:person.01166576632.22
    89 rdf:rest rdf:nil
    90 Nde6a3660c3884d3b9c3074f4fd320416 schema:name dimensions_id
    91 schema:value pub.1039483193
    92 rdf:type schema:PropertyValue
    93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Mathematical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Statistics
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1134206 schema:issn 1085-7117
    100 1537-2693
    101 schema:name Journal of Agricultural, Biological and Environmental Statistics
    102 schema:publisher Springer Nature
    103 rdf:type schema:Periodical
    104 sg:person.01166576632.22 schema:affiliation grid-institutes:grid.263864.d
    105 schema:familyName Schucany
    106 schema:givenName William R.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166576632.22
    108 rdf:type schema:Person
    109 sg:person.0644130544.49 schema:affiliation grid-institutes:grid.260120.7
    110 schema:familyName Gerard
    111 schema:givenName Patrick D.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644130544.49
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-1-4899-4493-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705924
    115 https://doi.org/10.1007/978-1-4899-4493-1
    116 rdf:type schema:CreativeWork
    117 grid-institutes:grid.260120.7 schema:alternateName Experimental Statistics Unit, Mississippi State University, Box 9653, 39762, MS
    118 schema:name Experimental Statistics Unit, Mississippi State University, Box 9653, 39762, MS
    119 rdf:type schema:Organization
    120 grid-institutes:grid.263864.d schema:alternateName Department of Statistical Science, Southern Methodist University, 75275-0332, Dallas, TX
    121 schema:name Department of Statistical Science, Southern Methodist University, 75275-0332, Dallas, TX
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...