On hybrid temporal basis functions for stable numerical solution of time domain boundary integral equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Fang Q. Hu

ABSTRACT

Problems in unsteady aerodynamics and aeroacoustics can sometimes be formulated as integral equations, such as the boundary integral equations. Numerical discretization of integral equations in the time domain often leads to so-called March-On-in-Time (MOT) schemes. In the literature, the temporal basis functions used in MOT schemes have been largely limited to low-order shifted Lagrange basis functions. In order to evaluate the accuracy and effectiveness of the temporal basis functions, a Fourier analysis of the temporal interpolation schemes is carried out. Based on the Fourier analysis, the spectral resolutions of various temporal basis functions are quantified. It is argued that hybrid temporal basis functions be used for interpolation of the numerical solution and its derivatives with respect to time. Stability of the proposed hybrid schemes is studied by a matrix eigenvalue method. Substantial improvement in accuracy and efficiency by using the hybrid temporal basis functions for time domain integral equations is demonstrated by numerical examples. Compared with the traditional temporal basis functions, the use of hybrid basis functions keeps numerical errors low for a larger frequency range given the same time step size. Conversely, for a given range of frequency of interest, a larger time step can be used with the hybrid temporal basis functions, resulting in an increase in computational efficiency and, at the same time, a reduction in memory requirement. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s42774-019-0011-x

DOI

http://dx.doi.org/10.1186/s42774-019-0011-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112987250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Old Dominion University", 
          "id": "https://www.grid.ac/institutes/grid.261368.8", 
          "name": [
            "Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Fang Q.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2514/2.2074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000456417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01398686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005072316", 
          "https://doi.org/10.1007/bf01398686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01398686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005072316", 
          "https://doi.org/10.1007/bf01398686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2008.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016089231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016638646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2015.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020469518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2013-2018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021784724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470091355.ecm022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023243120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1971.0097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023553038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041972966", 
          "https://doi.org/10.1007/s002110050033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049499377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drm044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2003.822450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061495211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2011.2165469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061499554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2012.2220318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061500418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2202909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062311680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.428076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062379331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.428406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062379661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090914456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.5017734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099865556"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Problems in unsteady aerodynamics and aeroacoustics can sometimes be formulated as integral equations, such as the boundary integral equations. Numerical discretization of integral equations in the time domain often leads to so-called March-On-in-Time (MOT) schemes. In the literature, the temporal basis functions used in MOT schemes have been largely limited to low-order shifted Lagrange basis functions. In order to evaluate the accuracy and effectiveness of the temporal basis functions, a Fourier analysis of the temporal interpolation schemes is carried out. Based on the Fourier analysis, the spectral resolutions of various temporal basis functions are quantified. It is argued that hybrid temporal basis functions be used for interpolation of the numerical solution and its derivatives with respect to time. Stability of the proposed hybrid schemes is studied by a matrix eigenvalue method. Substantial improvement in accuracy and efficiency by using the hybrid temporal basis functions for time domain integral equations is demonstrated by numerical examples. Compared with the traditional temporal basis functions, the use of hybrid basis functions keeps numerical errors low for a larger frequency range given the same time step size. Conversely, for a given range of frequency of interest, a larger time step can be used with the hybrid temporal basis functions, resulting in an increase in computational efficiency and, at the same time, a reduction in memory requirement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s42774-019-0011-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3816232", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1336387", 
        "issn": [
          "2524-6992"
        ], 
        "name": "Advances in Aerodynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "On hybrid temporal basis functions for stable numerical solution of time domain boundary integral equations", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85f3a6de93e961b93467cb1dc4190b26a93d373fe8dcdc9028bd8ee2c8bf8ef9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s42774-019-0011-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112987250"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s42774-019-0011-x", 
      "https://app.dimensions.ai/details/publication/pub.1112987250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112042_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs42774-019-0011-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0011-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0011-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0011-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0011-x'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s42774-019-0011-x schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Na7ffc32f1510456ba6eb728cd7fb0d99
4 schema:citation sg:pub.10.1007/bf01398686
5 sg:pub.10.1007/s002110050033
6 https://doi.org/10.1002/0470091355.ecm022
7 https://doi.org/10.1002/nme.745
8 https://doi.org/10.1016/j.apnum.2008.12.026
9 https://doi.org/10.1016/j.cam.2015.09.002
10 https://doi.org/10.1016/j.jcp.2010.07.026
11 https://doi.org/10.1016/j.jcp.2017.07.040
12 https://doi.org/10.1093/imanum/drm044
13 https://doi.org/10.1098/rspa.1971.0097
14 https://doi.org/10.1109/tap.2003.822450
15 https://doi.org/10.1109/tap.2011.2165469
16 https://doi.org/10.1109/tap.2012.2220318
17 https://doi.org/10.1121/1.2202909
18 https://doi.org/10.1121/1.428076
19 https://doi.org/10.1121/1.428406
20 https://doi.org/10.1121/1.5017734
21 https://doi.org/10.1137/1.9780898717938
22 https://doi.org/10.2514/2.2074
23 https://doi.org/10.2514/6.2013-2018
24 schema:datePublished 2019-12
25 schema:datePublishedReg 2019-12-01
26 schema:description Problems in unsteady aerodynamics and aeroacoustics can sometimes be formulated as integral equations, such as the boundary integral equations. Numerical discretization of integral equations in the time domain often leads to so-called March-On-in-Time (MOT) schemes. In the literature, the temporal basis functions used in MOT schemes have been largely limited to low-order shifted Lagrange basis functions. In order to evaluate the accuracy and effectiveness of the temporal basis functions, a Fourier analysis of the temporal interpolation schemes is carried out. Based on the Fourier analysis, the spectral resolutions of various temporal basis functions are quantified. It is argued that hybrid temporal basis functions be used for interpolation of the numerical solution and its derivatives with respect to time. Stability of the proposed hybrid schemes is studied by a matrix eigenvalue method. Substantial improvement in accuracy and efficiency by using the hybrid temporal basis functions for time domain integral equations is demonstrated by numerical examples. Compared with the traditional temporal basis functions, the use of hybrid basis functions keeps numerical errors low for a larger frequency range given the same time step size. Conversely, for a given range of frequency of interest, a larger time step can be used with the hybrid temporal basis functions, resulting in an increase in computational efficiency and, at the same time, a reduction in memory requirement.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N780ba1e0198f4384b4aa492cdd808f7a
31 Ncad6998066a94e449d743477513f5ec0
32 sg:journal.1336387
33 schema:name On hybrid temporal basis functions for stable numerical solution of time domain boundary integral equations
34 schema:pagination 9
35 schema:productId N35c03ef5b4424632aee0d46c002875ff
36 Nc2894e392536481c9260d24a29d70d5f
37 Nd35aa85ae21841e7bd21655eaabf8c00
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112987250
39 https://doi.org/10.1186/s42774-019-0011-x
40 schema:sdDatePublished 2019-04-11T13:04
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nad1b63f793044287be80369846516680
43 schema:url https://link.springer.com/10.1186%2Fs42774-019-0011-x
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N35c03ef5b4424632aee0d46c002875ff schema:name dimensions_id
48 schema:value pub.1112987250
49 rdf:type schema:PropertyValue
50 N780ba1e0198f4384b4aa492cdd808f7a schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 Na7ffc32f1510456ba6eb728cd7fb0d99 rdf:first Nf432ff5393504469b9928f5377dd7098
53 rdf:rest rdf:nil
54 Nad1b63f793044287be80369846516680 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nc2894e392536481c9260d24a29d70d5f schema:name readcube_id
57 schema:value 85f3a6de93e961b93467cb1dc4190b26a93d373fe8dcdc9028bd8ee2c8bf8ef9
58 rdf:type schema:PropertyValue
59 Ncad6998066a94e449d743477513f5ec0 schema:volumeNumber 1
60 rdf:type schema:PublicationVolume
61 Nd35aa85ae21841e7bd21655eaabf8c00 schema:name doi
62 schema:value 10.1186/s42774-019-0011-x
63 rdf:type schema:PropertyValue
64 Nf432ff5393504469b9928f5377dd7098 schema:affiliation https://www.grid.ac/institutes/grid.261368.8
65 schema:familyName Hu
66 schema:givenName Fang Q.
67 rdf:type schema:Person
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
72 schema:name Numerical and Computational Mathematics
73 rdf:type schema:DefinedTerm
74 sg:grant.3816232 http://pending.schema.org/fundedItem sg:pub.10.1186/s42774-019-0011-x
75 rdf:type schema:MonetaryGrant
76 sg:journal.1336387 schema:issn 2524-6992
77 schema:name Advances in Aerodynamics
78 rdf:type schema:Periodical
79 sg:pub.10.1007/bf01398686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005072316
80 https://doi.org/10.1007/bf01398686
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s002110050033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041972966
83 https://doi.org/10.1007/s002110050033
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/0470091355.ecm022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023243120
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/nme.745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016638646
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.apnum.2008.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016089231
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.cam.2015.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020469518
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jcp.2010.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049499377
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jcp.2017.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090914456
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1093/imanum/drm044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689476
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1098/rspa.1971.0097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023553038
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tap.2003.822450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061495211
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tap.2011.2165469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061499554
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tap.2012.2220318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061500418
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1121/1.2202909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062311680
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1121/1.428076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062379331
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1121/1.428406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062379661
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1121/1.5017734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099865556
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1137/1.9780898717938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555804
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2514/2.2074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000456417
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2514/6.2013-2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021784724
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.261368.8 schema:alternateName Old Dominion University
122 schema:name Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...