Two-stage fourth order: temporal-spatial coupling in computational fluid dynamics (CFD) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Jiequan Li

ABSTRACT

With increasing engineering demands, there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures and strong waves with correct “physics”. There are two families of high order methods: One is the method of line, relying on the Runge-Kutta (R-K) time-stepping. The building block is the Riemann solution labeled as the solution element “1”. Each step in R-K just has first order accuracy. In order to derive a fourth order accuracy scheme in time, one needs four stages labeled as “ 1⊙1⊙1⊙1=4”. The other is the one-stage Lax-Wendroff (LW) type method, which is more compact but is complicated to design numerical fluxes and hard to use when applied to highly nonlinear problems. In recent years, the pair of solution element and dynamics element, labeled as “2”, are taken as the building block. The direct adoption of the dynamics implies the inherent temporal-spatial coupling. With this type of building blocks, a family of two-stage fourth order accurate schemes, labeled as “ 2⊙2=4”, are designed for the computation of compressible fluid flows. The resulting schemes are compact, robust and efficient. This paper contributes to elucidate how and why high order accurate schemes should be so designed. To some extent, the “ 2⊙2=4” algorithm extracts the advantages of the method of line and one-stage LW method. As a core part, the pair “2” is expounded and LW solver is revisited. The generalized Riemann problem (GRP) solver, as the discontinuous and nonlinear version of LW flow solver, and the gas kinetic scheme (GKS) solver, the microscopic LW solver, are all reviewed. The compact Hermite-type data reconstruction and high order approximation of boundary conditions are proposed. Besides, the computational performance and prospective discussions are presented. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s42774-019-0004-9

DOI

http://dx.doi.org/10.1186/s42774-019-0004-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112266322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, People\u2019s Republic of China", 
            "Center for Applied Physics and Technology, Peking University, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jiequan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000236718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000236718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00211-007-0069-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001330529", 
          "https://doi.org/10.1007/s00211-007-0069-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00211-007-0069-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001330529", 
          "https://doi.org/10.1007/s00211-007-0069-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007197730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-016-0164-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008433054", 
          "https://doi.org/10.1007/s10915-016-0164-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015126814947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008438864", 
          "https://doi.org/10.1023/a:1015126814947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700023387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014996799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-96-00752-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015671976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(83)90136-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016544630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1989-0983311-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021581119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2002.7008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022839472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027931575", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01777-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027931575", 
          "https://doi.org/10.1007/978-3-642-01777-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01777-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027931575", 
          "https://doi.org/10.1007/978-3-642-01777-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160130205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160130205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4208/cicp.280410.300710a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033839387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-014-9823-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034123369", 
          "https://doi.org/10.1007/s11075-014-9823-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1996.0130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035331138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2001.6790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035685678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036821962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(84)90013-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042519808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1993.1198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045428915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.08.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047954978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049422091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049545649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-009-9349-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776311", 
          "https://doi.org/10.1007/s11075-009-9349-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-009-9349-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776311", 
          "https://doi.org/10.1007/s11075-009-9349-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1994.1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050419858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-013-9787-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051001738", 
          "https://doi.org/10.1007/s10915-013-9787-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053119450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0907051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0916072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m1052512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827594273948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085196582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4208/nmtma.2017.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091598784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2017.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092916672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511546785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511791253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098709967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098866403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2018.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103813762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2018.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104906548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2018.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106986071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2019.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111830899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2019.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111830899"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "With increasing engineering demands, there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures and strong waves with correct \u201cphysics\u201d. There are two families of high order methods: One is the method of line, relying on the Runge-Kutta (R-K) time-stepping. The building block is the Riemann solution labeled as the solution element \u201c1\u201d. Each step in R-K just has first order accuracy. In order to derive a fourth order accuracy scheme in time, one needs four stages labeled as \u201c 1\u22991\u22991\u22991=4\u201d. The other is the one-stage Lax-Wendroff (LW) type method, which is more compact but is complicated to design numerical fluxes and hard to use when applied to highly nonlinear problems. In recent years, the pair of solution element and dynamics element, labeled as \u201c2\u201d, are taken as the building block. The direct adoption of the dynamics implies the inherent temporal-spatial coupling. With this type of building blocks, a family of two-stage fourth order accurate schemes, labeled as \u201c 2\u22992=4\u201d, are designed for the computation of compressible fluid flows. The resulting schemes are compact, robust and efficient. This paper contributes to elucidate how and why high order accurate schemes should be so designed. To some extent, the \u201c 2\u22992=4\u201d algorithm extracts the advantages of the method of line and one-stage LW method. As a core part, the pair \u201c2\u201d is expounded and LW solver is revisited. The generalized Riemann problem (GRP) solver, as the discontinuous and nonlinear version of LW flow solver, and the gas kinetic scheme (GKS) solver, the microscopic LW solver, are all reviewed. The compact Hermite-type data reconstruction and high order approximation of boundary conditions are proposed. Besides, the computational performance and prospective discussions are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s42774-019-0004-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1336387", 
        "issn": [
          "2524-6992"
        ], 
        "name": "Advances in Aerodynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Two-stage fourth order: temporal-spatial coupling in computational fluid dynamics (CFD)", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b55e19b4f5faa60da52936347309e55306cec833cde62afc381b6c22f11b6bb8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s42774-019-0004-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112266322"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s42774-019-0004-9", 
      "https://app.dimensions.ai/details/publication/pub.1112266322"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs42774-019-0004-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0004-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0004-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0004-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s42774-019-0004-9'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s42774-019-0004-9 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N3fa0c3941c634525ac87a70981a4fa81
4 schema:citation sg:pub.10.1007/978-3-642-01777-3
5 sg:pub.10.1007/s00211-007-0069-y
6 sg:pub.10.1007/s10915-013-9787-8
7 sg:pub.10.1007/s10915-016-0164-2
8 sg:pub.10.1007/s11075-009-9349-1
9 sg:pub.10.1007/s11075-014-9823-2
10 sg:pub.10.1023/a:1015126814947
11 https://app.dimensions.ai/details/publication/pub.1027931575
12 https://doi.org/10.1002/cpa.3160130205
13 https://doi.org/10.1002/nme.1471
14 https://doi.org/10.1006/jcph.1993.1198
15 https://doi.org/10.1006/jcph.1994.1145
16 https://doi.org/10.1006/jcph.1996.0130
17 https://doi.org/10.1006/jcph.2001.6790
18 https://doi.org/10.1006/jcph.2002.7008
19 https://doi.org/10.1016/0021-9991(83)90136-5
20 https://doi.org/10.1016/0021-9991(84)90013-5
21 https://doi.org/10.1016/j.compfluid.2019.01.025
22 https://doi.org/10.1016/j.jcp.2003.07.026
23 https://doi.org/10.1016/j.jcp.2006.01.044
24 https://doi.org/10.1016/j.jcp.2006.03.035
25 https://doi.org/10.1016/j.jcp.2010.06.032
26 https://doi.org/10.1016/j.jcp.2010.07.014
27 https://doi.org/10.1016/j.jcp.2013.12.002
28 https://doi.org/10.1016/j.jcp.2016.08.054
29 https://doi.org/10.1016/j.jcp.2017.04.048
30 https://doi.org/10.1016/j.jcp.2017.11.023
31 https://doi.org/10.1016/j.jcp.2018.05.002
32 https://doi.org/10.1016/j.jcp.2018.06.034
33 https://doi.org/10.1016/j.jcp.2018.09.018
34 https://doi.org/10.1017/cbo9780511546785
35 https://doi.org/10.1017/cbo9780511791253
36 https://doi.org/10.1017/s1446788700023387
37 https://doi.org/10.1090/s0025-5718-1989-0983311-4
38 https://doi.org/10.1090/s0025-5718-96-00752-1
39 https://doi.org/10.1103/physrev.94.511
40 https://doi.org/10.1137/0907051
41 https://doi.org/10.1137/0916072
42 https://doi.org/10.1137/15m1052512
43 https://doi.org/10.1137/s1064827594273948
44 https://doi.org/10.1142/9324
45 https://doi.org/10.4208/cicp.280410.300710a
46 https://doi.org/10.4208/nmtma.2017.0018
47 schema:datePublished 2019-12
48 schema:datePublishedReg 2019-12-01
49 schema:description With increasing engineering demands, there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures and strong waves with correct “physics”. There are two families of high order methods: One is the method of line, relying on the Runge-Kutta (R-K) time-stepping. The building block is the Riemann solution labeled as the solution element “1”. Each step in R-K just has first order accuracy. In order to derive a fourth order accuracy scheme in time, one needs four stages labeled as “ 1⊙1⊙1⊙1=4”. The other is the one-stage Lax-Wendroff (LW) type method, which is more compact but is complicated to design numerical fluxes and hard to use when applied to highly nonlinear problems. In recent years, the pair of solution element and dynamics element, labeled as “2”, are taken as the building block. The direct adoption of the dynamics implies the inherent temporal-spatial coupling. With this type of building blocks, a family of two-stage fourth order accurate schemes, labeled as “ 2⊙2=4”, are designed for the computation of compressible fluid flows. The resulting schemes are compact, robust and efficient. This paper contributes to elucidate how and why high order accurate schemes should be so designed. To some extent, the “ 2⊙2=4” algorithm extracts the advantages of the method of line and one-stage LW method. As a core part, the pair “2” is expounded and LW solver is revisited. The generalized Riemann problem (GRP) solver, as the discontinuous and nonlinear version of LW flow solver, and the gas kinetic scheme (GKS) solver, the microscopic LW solver, are all reviewed. The compact Hermite-type data reconstruction and high order approximation of boundary conditions are proposed. Besides, the computational performance and prospective discussions are presented.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N0e4aa9dc71d34a9b85d2e0c1caad3f06
54 N2555b4133d3b48f193d838a791ea11e9
55 sg:journal.1336387
56 schema:name Two-stage fourth order: temporal-spatial coupling in computational fluid dynamics (CFD)
57 schema:pagination 3
58 schema:productId N4cd6c27aa89243d5bfa5360ea1fdcbe5
59 N6347cf20c4ed49f8b315ede2684318a4
60 N8733300fdf65499188ec507e816c1aa9
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112266322
62 https://doi.org/10.1186/s42774-019-0004-9
63 schema:sdDatePublished 2019-04-11T10:27
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N9681f46d69cf455d95bac7309601b945
66 schema:url https://link.springer.com/10.1186%2Fs42774-019-0004-9
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0e4aa9dc71d34a9b85d2e0c1caad3f06 schema:volumeNumber 1
71 rdf:type schema:PublicationVolume
72 N2555b4133d3b48f193d838a791ea11e9 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N3b7eb1c4cd2946e496cbe6567699060e schema:affiliation https://www.grid.ac/institutes/grid.11135.37
75 schema:familyName Li
76 schema:givenName Jiequan
77 rdf:type schema:Person
78 N3fa0c3941c634525ac87a70981a4fa81 rdf:first N3b7eb1c4cd2946e496cbe6567699060e
79 rdf:rest rdf:nil
80 N4cd6c27aa89243d5bfa5360ea1fdcbe5 schema:name readcube_id
81 schema:value b55e19b4f5faa60da52936347309e55306cec833cde62afc381b6c22f11b6bb8
82 rdf:type schema:PropertyValue
83 N6347cf20c4ed49f8b315ede2684318a4 schema:name dimensions_id
84 schema:value pub.1112266322
85 rdf:type schema:PropertyValue
86 N8733300fdf65499188ec507e816c1aa9 schema:name doi
87 schema:value 10.1186/s42774-019-0004-9
88 rdf:type schema:PropertyValue
89 N9681f46d69cf455d95bac7309601b945 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
95 schema:name Numerical and Computational Mathematics
96 rdf:type schema:DefinedTerm
97 sg:journal.1336387 schema:issn 2524-6992
98 schema:name Advances in Aerodynamics
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-3-642-01777-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027931575
101 https://doi.org/10.1007/978-3-642-01777-3
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00211-007-0069-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001330529
104 https://doi.org/10.1007/s00211-007-0069-y
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10915-013-9787-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051001738
107 https://doi.org/10.1007/s10915-013-9787-8
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10915-016-0164-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008433054
110 https://doi.org/10.1007/s10915-016-0164-2
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11075-009-9349-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049776311
113 https://doi.org/10.1007/s11075-009-9349-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11075-014-9823-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034123369
116 https://doi.org/10.1007/s11075-014-9823-2
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/a:1015126814947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008438864
119 https://doi.org/10.1023/a:1015126814947
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1027931575 schema:CreativeWork
122 https://doi.org/10.1002/cpa.3160130205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059618
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/nme.1471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010900602
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1006/jcph.1993.1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045428915
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/jcph.1994.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050419858
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jcph.1996.0130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035331138
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/jcph.2001.6790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035685678
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1006/jcph.2002.7008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022839472
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0021-9991(83)90136-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016544630
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0021-9991(84)90013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042519808
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.compfluid.2019.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111830899
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jcp.2003.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000236718
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jcp.2006.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007197730
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jcp.2006.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036821962
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jcp.2010.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049422091
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jcp.2010.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053119450
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jcp.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049545649
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jcp.2016.08.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047954978
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jcp.2017.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085196582
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jcp.2017.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092916672
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jcp.2018.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103813762
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jcp.2018.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104906548
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jcp.2018.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106986071
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1017/cbo9780511546785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679384
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1017/cbo9780511791253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709967
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1017/s1446788700023387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014996799
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1090/s0025-5718-1989-0983311-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021581119
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1090/s0025-5718-96-00752-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015671976
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1137/0907051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855836
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1137/0916072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857770
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1137/15m1052512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874324
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1137/s1064827594273948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884236
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1142/9324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098866403
187 rdf:type schema:CreativeWork
188 https://doi.org/10.4208/cicp.280410.300710a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033839387
189 rdf:type schema:CreativeWork
190 https://doi.org/10.4208/nmtma.2017.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091598784
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
193 schema:name Center for Applied Physics and Technology, Peking University, Beijing, People’s Republic of China
194 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, People’s Republic of China
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...