Automated extraction of attributes from natural language attribute-based access control (ABAC) Policies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Manar Alohaly, Hassan Takabi, Eduardo Blanco

ABSTRACT

The National Institute of Standards and Technology (NIST) has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy (NLACP) to a machine-readable form. To study the automation process, we consider the hierarchical ABAC model as our reference model since it better reflects the requirements of real-world organizations. Therefore, this paper focuses on the questions of: how can we automatically infer the hierarchical structure of an ABAC model given NLACPs; and, how can we extract and define the set of authorization attributes based on the resulting structure. To address these questions, we propose an approach built upon recent advancements in natural language processing and machine learning techniques. For such a solution, the lack of appropriate data often poses a bottleneck. Therefore, we decouple the primary contributions of this work into: (1) developing a practical framework to extract authorization attributes of hierarchical ABAC system from natural language artifacts, and (2) generating a set of realistic synthetic natural language access control policies (NLACPs) to evaluate the proposed framework. Our experimental results are promising as we achieved - in average - an F1-score of 0.96 when extracting attributes values of subjects, and 0.91 when extracting the values of objects’ attributes from natural language access control policies. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s42400-018-0019-2

DOI

http://dx.doi.org/10.1186/s42400-018-0019-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111584606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princess Nourah bint Abdulrahman University", 
          "id": "https://www.grid.ac/institutes/grid.449346.8", 
          "name": [
            "Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA", 
            "College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alohaly", 
        "givenName": "Manar", 
        "id": "sg:person.013700622615.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700622615.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takabi", 
        "givenName": "Hassan", 
        "id": "sg:person.011763213125.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763213125.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanco", 
        "givenName": "Eduardo", 
        "id": "sg:person.014415542455.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415542455.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2664243.2664280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000947611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775265.775268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003994751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/992424.992434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004568434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/219717.219748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005662680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2393596.2393608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006563679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2567948.2577348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012309215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012321154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2752952.2752958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014143838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017347292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020339635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-43936-4_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023870535", 
          "https://doi.org/10.1007/978-3-662-43936-4_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1119176.1119195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031120478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2875491.2875497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033673495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-41483-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034630709", 
          "https://doi.org/10.1007/978-3-319-41483-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035788679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-17040-4_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036879161", 
          "https://doi.org/10.1007/978-3-319-17040-4_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00763644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039810762", 
          "https://doi.org/10.1007/bf00763644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00763644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039810762", 
          "https://doi.org/10.1007/bf00763644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s13537-013-0104-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040368527", 
          "https://doi.org/10.2478/s13537-013-0104-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1220835.1220872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041757610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24018-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049108546", 
          "https://doi.org/10.1007/978-3-319-24018-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-3223-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050199567", 
          "https://doi.org/10.1007/978-1-4614-3223-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15934-8_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050406875", 
          "https://doi.org/10.1007/978-3-319-15934-8_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdsc.2014.2369048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061585483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3041048.3041051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084933228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3041048.3041054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084935078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-61176-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086139115", 
          "https://doi.org/10.1007/978-3-319-61176-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3078861.3084163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090744437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3078861.3078874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090746696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3068335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090933116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icadiwt.2014.6814687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093999634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comnet.2010.5699810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094485457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/spw.2013.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094638877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cewit.2013.6713753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094746913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acsac.2008.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095414514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/w16-0309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098652967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/s14-2098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099139173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/s14-2098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099139173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1613715.1613726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099150794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1218955.1219009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1218955.1219009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1219840.1219893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1219840.1219893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1034678.1034697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099239453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1034678.1034697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099239453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdsc.2018.2818708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101728907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/n18-2034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104321329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3205977.3205984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104470306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3205977.3205984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104470306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3205977.3205988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104470310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3205977.3205988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104470310"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The National Institute of Standards and Technology (NIST) has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy (NLACP) to a machine-readable form. To study the automation process, we consider the hierarchical ABAC model as our reference model since it better reflects the requirements of real-world organizations. Therefore, this paper focuses on the questions of: how can we automatically infer the hierarchical structure of an ABAC model given NLACPs; and, how can we extract and define the set of authorization attributes based on the resulting structure. To address these questions, we propose an approach built upon recent advancements in natural language processing and machine learning techniques. For such a solution, the lack of appropriate data often poses a bottleneck. Therefore, we decouple the primary contributions of this work into: (1) developing a practical framework to extract authorization attributes of hierarchical ABAC system from natural language artifacts, and (2) generating a set of realistic synthetic natural language access control policies (NLACPs) to evaluate the proposed framework. Our experimental results are promising as we achieved - in average - an F1-score of 0.96 when extracting attributes values of subjects, and 0.91 when extracting the values of objects\u2019 attributes from natural language access control policies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s42400-018-0019-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1320445", 
        "issn": [
          "2523-3246"
        ], 
        "name": "Cybersecurity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Automated extraction of attributes from natural language attribute-based access control (ABAC) Policies", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fae0e27fb49bec9578bea5d5ba9e62fba2c1d958ea81e9d1885218b970ae512f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s42400-018-0019-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111584606"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s42400-018-0019-2", 
      "https://app.dimensions.ai/details/publication/pub.1111584606"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs42400-018-0019-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s42400-018-0019-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s42400-018-0019-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s42400-018-0019-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s42400-018-0019-2'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s42400-018-0019-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N75133859c8e44aa0ab0509c43fbd6e68
4 schema:citation sg:pub.10.1007/978-1-4614-3223-4_2
5 sg:pub.10.1007/978-3-319-15934-8_24
6 sg:pub.10.1007/978-3-319-17040-4_12
7 sg:pub.10.1007/978-3-319-24018-3_9
8 sg:pub.10.1007/978-3-319-41483-6_6
9 sg:pub.10.1007/978-3-319-61176-1_5
10 sg:pub.10.1007/978-3-662-43936-4_18
11 sg:pub.10.1007/bf00763644
12 sg:pub.10.1038/nature14539
13 sg:pub.10.2478/s13537-013-0104-2
14 https://doi.org/10.1016/j.chemolab.2012.11.006
15 https://doi.org/10.1016/j.ipm.2009.03.002
16 https://doi.org/10.1109/acsac.2008.38
17 https://doi.org/10.1109/cewit.2013.6713753
18 https://doi.org/10.1109/comnet.2010.5699810
19 https://doi.org/10.1109/icadiwt.2014.6814687
20 https://doi.org/10.1109/spw.2013.37
21 https://doi.org/10.1109/tdsc.2014.2369048
22 https://doi.org/10.1109/tdsc.2018.2818708
23 https://doi.org/10.1126/science.1136800
24 https://doi.org/10.1145/1390156.1390177
25 https://doi.org/10.1145/219717.219748
26 https://doi.org/10.1145/2393596.2393608
27 https://doi.org/10.1145/2567948.2577348
28 https://doi.org/10.1145/2664243.2664280
29 https://doi.org/10.1145/2752952.2752958
30 https://doi.org/10.1145/2875491.2875497
31 https://doi.org/10.1145/3041048.3041051
32 https://doi.org/10.1145/3041048.3041054
33 https://doi.org/10.1145/3068335
34 https://doi.org/10.1145/3078861.3078874
35 https://doi.org/10.1145/3078861.3084163
36 https://doi.org/10.1145/3205977.3205984
37 https://doi.org/10.1145/3205977.3205988
38 https://doi.org/10.1145/775265.775268
39 https://doi.org/10.18653/v1/n18-2034
40 https://doi.org/10.18653/v1/w16-0309
41 https://doi.org/10.2307/2346830
42 https://doi.org/10.3115/1034678.1034697
43 https://doi.org/10.3115/1119176.1119195
44 https://doi.org/10.3115/1218955.1219009
45 https://doi.org/10.3115/1219840.1219893
46 https://doi.org/10.3115/1220835.1220872
47 https://doi.org/10.3115/1613715.1613726
48 https://doi.org/10.3115/992424.992434
49 https://doi.org/10.3115/v1/d14-1082
50 https://doi.org/10.3115/v1/d14-1162
51 https://doi.org/10.3115/v1/s14-2098
52 schema:datePublished 2019-12
53 schema:datePublishedReg 2019-12-01
54 schema:description The National Institute of Standards and Technology (NIST) has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy (NLACP) to a machine-readable form. To study the automation process, we consider the hierarchical ABAC model as our reference model since it better reflects the requirements of real-world organizations. Therefore, this paper focuses on the questions of: how can we automatically infer the hierarchical structure of an ABAC model given NLACPs; and, how can we extract and define the set of authorization attributes based on the resulting structure. To address these questions, we propose an approach built upon recent advancements in natural language processing and machine learning techniques. For such a solution, the lack of appropriate data often poses a bottleneck. Therefore, we decouple the primary contributions of this work into: (1) developing a practical framework to extract authorization attributes of hierarchical ABAC system from natural language artifacts, and (2) generating a set of realistic synthetic natural language access control policies (NLACPs) to evaluate the proposed framework. Our experimental results are promising as we achieved - in average - an F1-score of 0.96 when extracting attributes values of subjects, and 0.91 when extracting the values of objects’ attributes from natural language access control policies.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N6577027345c94ef69035c950c4d99f70
59 N94fffe693fc148698167f26cf65c077a
60 sg:journal.1320445
61 schema:name Automated extraction of attributes from natural language attribute-based access control (ABAC) Policies
62 schema:pagination 2
63 schema:productId N063dc78f80e3488f99e704c790d625f3
64 Na3ec99c3cc8c4c02bce118890466dc01
65 Nfadce5aea1f8460299e12eeb62d511cd
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111584606
67 https://doi.org/10.1186/s42400-018-0019-2
68 schema:sdDatePublished 2019-04-11T08:56
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N8e32e6880fe445799471ce7b5ee8f396
71 schema:url https://link.springer.com/10.1186%2Fs42400-018-0019-2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N063dc78f80e3488f99e704c790d625f3 schema:name readcube_id
76 schema:value fae0e27fb49bec9578bea5d5ba9e62fba2c1d958ea81e9d1885218b970ae512f
77 rdf:type schema:PropertyValue
78 N6577027345c94ef69035c950c4d99f70 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N75133859c8e44aa0ab0509c43fbd6e68 rdf:first sg:person.013700622615.14
81 rdf:rest Ne3a830e86acd46cb82caa286c42fdbe8
82 N8e32e6880fe445799471ce7b5ee8f396 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N94fffe693fc148698167f26cf65c077a schema:volumeNumber 2
85 rdf:type schema:PublicationVolume
86 Na3ec99c3cc8c4c02bce118890466dc01 schema:name doi
87 schema:value 10.1186/s42400-018-0019-2
88 rdf:type schema:PropertyValue
89 Ne3a830e86acd46cb82caa286c42fdbe8 rdf:first sg:person.011763213125.71
90 rdf:rest Neeb12fc052cf46509e442b1fc9d50c40
91 Neeb12fc052cf46509e442b1fc9d50c40 rdf:first sg:person.014415542455.31
92 rdf:rest rdf:nil
93 Nfadce5aea1f8460299e12eeb62d511cd schema:name dimensions_id
94 schema:value pub.1111584606
95 rdf:type schema:PropertyValue
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:journal.1320445 schema:issn 2523-3246
103 schema:name Cybersecurity
104 rdf:type schema:Periodical
105 sg:person.011763213125.71 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
106 schema:familyName Takabi
107 schema:givenName Hassan
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763213125.71
109 rdf:type schema:Person
110 sg:person.013700622615.14 schema:affiliation https://www.grid.ac/institutes/grid.449346.8
111 schema:familyName Alohaly
112 schema:givenName Manar
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700622615.14
114 rdf:type schema:Person
115 sg:person.014415542455.31 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
116 schema:familyName Blanco
117 schema:givenName Eduardo
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415542455.31
119 rdf:type schema:Person
120 sg:pub.10.1007/978-1-4614-3223-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050199567
121 https://doi.org/10.1007/978-1-4614-3223-4_2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-319-15934-8_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050406875
124 https://doi.org/10.1007/978-3-319-15934-8_24
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-319-17040-4_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036879161
127 https://doi.org/10.1007/978-3-319-17040-4_12
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-319-24018-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049108546
130 https://doi.org/10.1007/978-3-319-24018-3_9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/978-3-319-41483-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034630709
133 https://doi.org/10.1007/978-3-319-41483-6_6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-319-61176-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086139115
136 https://doi.org/10.1007/978-3-319-61176-1_5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-662-43936-4_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023870535
139 https://doi.org/10.1007/978-3-662-43936-4_18
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf00763644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039810762
142 https://doi.org/10.1007/bf00763644
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
145 https://doi.org/10.1038/nature14539
146 rdf:type schema:CreativeWork
147 sg:pub.10.2478/s13537-013-0104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040368527
148 https://doi.org/10.2478/s13537-013-0104-2
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.chemolab.2012.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020339635
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ipm.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012321154
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/acsac.2008.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095414514
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/cewit.2013.6713753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094746913
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/comnet.2010.5699810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094485457
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/icadiwt.2014.6814687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093999634
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/spw.2013.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094638877
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tdsc.2014.2369048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061585483
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tdsc.2018.2818708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101728907
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1136800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347292
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1145/1390156.1390177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035788679
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1145/219717.219748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005662680
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1145/2393596.2393608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006563679
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/2567948.2577348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012309215
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/2664243.2664280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000947611
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/2752952.2752958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014143838
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/2875491.2875497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033673495
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1145/3041048.3041051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084933228
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1145/3041048.3041054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084935078
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1145/3068335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090933116
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/3078861.3078874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090746696
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/3078861.3084163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090744437
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/3205977.3205984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104470306
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1145/3205977.3205988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104470310
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1145/775265.775268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003994751
199 rdf:type schema:CreativeWork
200 https://doi.org/10.18653/v1/n18-2034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104321329
201 rdf:type schema:CreativeWork
202 https://doi.org/10.18653/v1/w16-0309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098652967
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3115/1034678.1034697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099239453
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3115/1119176.1119195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031120478
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3115/1218955.1219009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221238
211 rdf:type schema:CreativeWork
212 https://doi.org/10.3115/1219840.1219893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221900
213 rdf:type schema:CreativeWork
214 https://doi.org/10.3115/1220835.1220872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041757610
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3115/1613715.1613726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099150794
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3115/992424.992434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004568434
219 rdf:type schema:CreativeWork
220 https://doi.org/10.3115/v1/d14-1082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110754
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3115/v1/d14-1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110523
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3115/v1/s14-2098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099139173
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
227 schema:name Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.449346.8 schema:alternateName Princess Nourah bint Abdulrahman University
230 schema:name College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
231 Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...